Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
J Am Chem Soc ; 146(19): 13258-13265, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696718

RESUMO

Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to be able to detect both the real contact area and the nanoscopic local pressure distribution simultaneously. In this paper, we present a method that uses planarizable molecular probes in combination with fluorescence microscopy to achieve this goal. These probes, inherently twisted in their ground states, undergo planarization under the influence of pressure, leading to bathochromic and hyperchromic shifts of their UV-vis absorption band. This allows us to map the local pressure in mechanical contact from fluorescence by exciting the emission in the long-wavelength region of the absorption band. We demonstrate a linear relationship between fluorescence intensity and (simulated) pressure at the submicron scale. This relationship enables us to experimentally depict the pressure distribution in multiasperity contacts. The method presented here offers a new way of bridging friction studies of the nanoscale model systems and practical situations for which surface roughness plays a crucial role.

2.
Sci Adv ; 10(16): eadi7302, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630813

RESUMO

Studying the effect of mechanical perturbations on granular systems is crucial for understanding soil stability, avalanches, and earthquakes. We investigate a granular system as a laboratory proxy for fault gouge. When subjected to a slow shear, granular materials typically exhibit a stress overshoot before reaching a steady state. We find that short seismic pulses can reset a granular system flowing in steady state so that the stress overshoot is regenerated. This feature is shown to determine the stability of the granular system under different applied stresses in the wake of a perturbation pulse and the resulting dynamics when it fails. Using an analytical aging-rejuvenation model for describing the overshoot response, we show that our laboratory-derived theoretical framework can quantitatively explain data from two fault slip events triggered by seismic waves.

3.
Proc Natl Acad Sci U S A ; 121(11): e2313162121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451946

RESUMO

Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H[Formula: see text]O/D[Formula: see text]O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H[Formula: see text]O and D[Formula: see text]O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D[Formula: see text]O than in H[Formula: see text]O, and collagen in D[Formula: see text]O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H[Formula: see text]O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D[Formula: see text]O is less hydrated than in H[Formula: see text]O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen-water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.


Assuntos
Colágeno , Água , Água/química , Termodinâmica , Hidrogênio
4.
J Phys Chem Lett ; 15(7): 1936-1942, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38346098

RESUMO

Contact mechanics, spanning nanometer to tectonic scales, faces long-standing challenges arising from multiscale random roughness, which hinders experimental validation of theories. Understanding multi-asperity rough contacts is vital for addressing catastrophic consequences of these contacts failing such as earthquakes and for diverse technological applications. To visualize such contacts, we introduce a super-resolution microscopy method utilizing spontaneous millisecond ON/OFF fluorescence blinking of contact-sensitive molecular rotor molecules immobilized on a glass coverslip. This technique achieves ∼55 nm lateral imaging resolution for rough poly(methyl methacrylate) and glass spheres on glass contacts. For soft polymer spheres due to large plastic deformation, the resolution improvement does not significantly affect the area of real contact. However, for hard glass spheres, the real contact area is found to be 2.4 times smaller than that found by diffraction-limited imaging. This study highlights, through direct visualization, the impact of material stiffness on the nanoscale structure within the area of real contact.

5.
J Phys Chem Lett ; 15(2): 628-635, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38205957

RESUMO

The sol-gel transition involves the transformation of a colloidal suspension into a system-spanning, interconnected gel. This process is widely used to reinforce mechanically weakened porous artifacts, such as sculptures but the impact of the restricted geometry (porous network) on the gelation dynamics of the solution remains unclear. Here, using fluorescent viscosity-sensitive molecular rotors, confocal microscopy, and model pores, we visualize the local viscosity changes at the microscale that accompany the sol-gel transition of a methyltriethoxysilane solution into a gel network. We show that, with evaporation of the solvent, a viscosity gradient develops near the free surface, triggering the sol-gel transition inside small pores near the surface. In homogeneous porous media, this leads to skin formation, which reduces the evaporation rate. In heterogeneous porous media, a gradient in gel density develops toward the heart of the porous material, where the gel formation mainly occurs as capillary bridges within smaller pores.

6.
Langmuir ; 40(1): 275-281, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38118145

RESUMO

The droplet size in emulsions is known to affect the rheological properties and plays a crucial role in many applications of emulsions. Despite its importance, the underlying mechanisms governing droplet size in emulsification remain poorly understood. We investigate the average drop size and size distribution upon emulsification with a high-shear mixer for model oil-in-water emulsions stabilized by a surfactant. The size distribution is found to be a log-normal distribution resulting from the repetitive random breakup of drops. High-shear emulsification, the usual way of making emulsions, is therefore found to be very different from turbulent emulsification given by the Kolmogorov-Hinze theory, for which power-law distributions of the drop size are expected. In agreement with this, the mean droplet size does not follow a scaling with the Reynolds number of the emulsification flow but rather a capillary number scaling based on the viscosity of the continuous phase.

7.
Langmuir ; 39(50): 18208-18214, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051540

RESUMO

We investigated the nucleation and growth processes of individual NaCl crystals from an evaporating salt solution that is supersaturated. We find that crystals nucleate at the liquid/vapor interface, resulting in distinct "pendant" crystals, which reach millimeter dimensions. The substantial size of the crystals induces deformation of the interface. This process and the evaporation rate, in turn, determine the final crystal shape, which features a deep central cavity. Our findings reveal that a delicate balance exists between gravity, buoyancy, and the surface tension of the liquid/vapor interface that allows the crystal to remain pendant. When the contact angle of the crystal with the meniscus reaches 90°, the crystal disconnects from the interface and falls into the solution. We quantitatively predict the critical mass at which this occurs.

8.
Phys Rev Lett ; 131(22): 226201, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101386

RESUMO

Controlling macroscopic friction is crucial for numerous natural and industrial applications, ranging from forecasting earthquakes to miniaturizing semiconductor devices, but predicting and manipulating friction phenomena remains a challenge due to the unknown relationship between nanoscale and macroscopic friction. Here, we show experimentally that dry friction at multiasperity Si-on-Si interfaces is dominated by the formation of interfacial siloxane (Si─O─Si) bonds, the density of which can be precisely regulated by exposing plasma-cleaned silicon surfaces to dry nitrogen. Our results show how the bond density can be used to quantitatively understand and control the macroscopic friction. Our findings establish a unique connection between the molecular scale at which adhesion occurs, and the friction coefficient that is the key macroscopic parameter for industrial and natural tribology challenges.

9.
Langmuir ; 39(41): 14652-14659, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37788122

RESUMO

A key challenge in the recycling of multilayer plastic films of polyethylene and polyamide, as typically used for food packaging, is to assess and control the phase separation of the two types of polymers in the recycled material, the specifics of which determine the mechanical strength of the recycled material. However, visualizing the polyamide-in-polyethylene domains with conventional fluorescence methods or electron microscopy is challenging. We present a new approach that combines the point accumulation in nanoscale topography (PAINT) super-resolution method with a newly synthesized Nile Red probe (diOHNR) as the fluorescent label. The molecule was modified to undergo a hydrogen bond-assisted interaction with the polyamide phase in the blend due to its two additional hydroxyl groups but preserves the spectral properties of Nile Red. As a result, the localization density of the probe in the PAINT image is 13 times larger at the polyamide phase than at the polyethylene phase, enabling quantitative evaluation of the spatial polyamide/polyethylene distribution down to the nanoscale. The method achieved a spatial resolution of 18.8 nm, and we found that over half of the polyamide particles in a recycled sample were smaller than the optical diffraction limit. Being able to image the blends with nanoscopic resolution can help to optimize the composition and mechanical properties of recycled materials and thus contribute to an increased reuse of plastics.

10.
JAMA Netw Open ; 6(10): e2337258, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37819660

RESUMO

Importance: Infection control guidelines have historically classified high-flow nasal oxygen and noninvasive ventilation as aerosol-generating procedures that require specialized infection prevention and control measures. Objective: To evaluate the current evidence that high-flow nasal oxygen and noninvasive ventilation are associated with pathogen-laden aerosols and aerosol generation. Data Sources: A systematic search of EMBASE and PubMed/MEDLINE up to March 15, 2023, and CINAHL and ClinicalTrials.gov up to August 1, 2023, was performed. Study Selection: Observational and (quasi-)experimental studies of patients or healthy volunteers supported with high-flow nasal oxygen or noninvasive ventilation were selected. Data Extraction and Synthesis: Three reviewers were involved in independent study screening, assessment of risk of bias, and data extraction. Data from observational studies were pooled using a random-effects model at both sample and patient levels. Sensitivity analyses were performed to assess the influence of model choice. Main Outcomes and Measures: The main outcomes were the detection of pathogens in air samples and the quantity of aerosol particles. Results: Twenty-four studies were included, of which 12 involved measurements in patients and 15 in healthy volunteers. Five observational studies on SARS-CoV-2 detection in a total of 212 air samples during high-flow nasal oxygen in 152 patients with COVID-19 were pooled for meta-analysis. There was no association between high-flow nasal oxygen and pathogen-laden aerosols (odds ratios for positive samples, 0.73 [95% CI, 0.15-3.55] at the sample level and 0.80 [95% CI, 0.14-4.59] at the patient level). Two studies assessed SARS-CoV-2 detection during noninvasive ventilation (84 air samples from 72 patients). There was no association between noninvasive ventilation and pathogen-laden aerosols (odds ratios for positive samples, 0.38 [95% CI, 0.03-4.63] at the sample level and 0.43 [95% CI, 0.01-27.12] at the patient level). None of the studies in healthy volunteers reported clinically relevant increases in aerosol particle production by high-flow nasal oxygen or noninvasive ventilation. Conclusions and Relevance: This systematic review and meta-analysis found no association between high-flow nasal oxygen or noninvasive ventilation and increased airborne pathogen detection or aerosol generation. These findings argue against classifying high-flow nasal oxygen or noninvasive ventilation as aerosol-generating procedures or differentiating infection prevention and control practices for patients receiving these modalities.


Assuntos
COVID-19 , Ventilação não Invasiva , Humanos , Aerossóis e Gotículas Respiratórios , Oxigênio , Ventilação não Invasiva/métodos , SARS-CoV-2
11.
Nat Commun ; 14(1): 3606, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330517

RESUMO

The coefficient of static friction between solids normally increases with the time they have remained in static contact before the measurement. This phenomenon, known as frictional aging, is at the origin of the difference between static and dynamic friction coefficients but has remained difficult to understand. It is usually attributed to a slow expansion of the area of atomic contact as the interface changes under pressure. This is however challenging to quantify as surfaces have roughness at all length scales. In addition, friction is not always proportional to the contact area. Here we show that the normalized stress relaxation of the surface asperities during frictional contact with a hard substrate is the same as that of the bulk material, regardless of the asperities' size or degree of compression. This result enables us to predict the frictional aging of rough interfaces based on the bulk material properties of two typical polymers: polypropylene and polytetrafluoroethylene.

13.
Sci Rep ; 13(1): 8851, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258559

RESUMO

Nebulization of mRNA therapeutics can be used to directly target the respiratory tract. A promising prospect is that mucosal administration of lipid nanoparticle (LNP)-based mRNA vaccines may lead to a more efficient protection against respiratory viruses. However, the nebulization process can rupture the LNP vehicles and degrade the mRNA molecules inside. Here we present a novel nebulization method able to preserve substantially the integrity of vaccines, as tested with two SARS-CoV-2 mRNA vaccines. We compare the new method with well-known nebulization methods used for medical respiratory applications. We find that a lower energy level in generating LNP droplets using the new nebulization method helps safeguard the integrity of the LNP and vaccine. By comparing nebulization techniques with different energy dissipation levels we find that LNPs and mRNAs can be kept largely intact if the energy dissipation remains below a threshold value, for LNP integrity 5-10 J/g and for mRNA integrity 10-20 J/g for both vaccines.


Assuntos
COVID-19 , Nanopartículas , Humanos , Vacinas contra COVID-19 , SARS-CoV-2/genética , COVID-19/prevenção & controle , RNA Mensageiro/genética , Vacinas de mRNA
14.
Phys Rev E ; 107(2-1): 024801, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932486

RESUMO

Polytetrafluoroethylene [PTFE (Teflon)] is a uniquely slippery polymer, with a coefficient of friction that is an order of magnitude lower than that of other polymers. Though known as nonsticky, PTFE leaves a layer of material behind on the substrate while sliding. Here, we use contact-sensitive fluorescent probes to image the sliding contact in situ: We show that slip happens at an internal PTFE-PTFE interface that has an unusually low shear strength of 0.8 MPa. This weak internal interface directly leads to low friction and enables transfer of the PTFE film to the substrate even in the absence of strong adhesion.

15.
Phys Rev Lett ; 130(10): 108201, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962056

RESUMO

The question of when and how dense granular materials start to flow under stress, despite many industrial and geophysical applications, remains largely unresolved. We develop and test a simple equation for the onset of quasistatic flows of granular materials which is based on the frictional aging of the granular packing. The result is a nonmonotonic stress-strain relation which-akin to classical friction-is independent of the shear rate. This relation suffices to understand the quasistatic deformations of aging granular media, and its solid-to-liquid transition. Our results also elucidate the (flow) history dependence of the mechanical properties, and the sensitivity to the initial preparation of granular media.

17.
Langmuir ; 39(12): 4207-4215, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36919825

RESUMO

Emulsions often act as carriers for water-insoluble solutes that are delivered to a specific target. The molecular transport of solutes in emulsions can be facilitated by surfactants and is often limited by diffusion through the continuous phase. We here investigate this transport on a molecular scale by using a lipophilic molecular rotor as a proxy for solutes. Using fluorescence lifetime microscopy we track the transport of these molecules from the continuous phase toward the dispersed phase in polydisperse oil-in-water emulsions. We show that this transport comprises two time scales, which vary significantly with droplet size and surfactant concentration, and, depending on the type of surfactant used, can be limited either by transport across the oil-water interface or by diffusion through the continuous phase. By studying the time-resolved fluorescence of the fluorophore, accompanied by molecular dynamics simulations, we demonstrate how the rate of transport observed on a macroscopic scale can be explained in terms of the local environment that the probe molecules are exposed to.

18.
ACS Appl Mater Interfaces ; 15(9): 12603-12608, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827622

RESUMO

When two solid objects slide over each other, friction results from the interactions between the asperities of the (invariably rough) surfaces. Lubrication happens when viscous lubricants separate the two surfaces and carry the load such that solid-on-solid contacts are avoided. Yet, even small amounts of low-viscosity lubricants can still significantly lower friction through a process called boundary lubrication. Understanding the origin of the boundary lubricating effect is hampered by challenges in measuring the interfacial properties of lubricants directly between the two surfaces. Here, we use rigidochromic fluorescent probe molecules to measure precisely what happens on a molecular scale during vapor-phase boundary lubrication of a polymer bead-on-glass interface. The probe molecules have a longer fluorescence lifetime in a confined environment, which allows one to measure the area of real contact between rough surfaces and infer the shear stress at the lubricated interfaces. The latter is shown to be proportional to the inverse of the local interfacial free volume determined using the measured fluorescence lifetime. The free volume can then be used in an Eyring-type model as the stress activation volume, allowing to collapse the data of stress as a function of sliding velocity and partial pressure of the vapor phase lubricant. This shows directly that as more boundary lubricant is applied, larger clusters of lubricant molecules become involved in the shear process thereby lowering the friction.

19.
Soft Matter ; 19(10): 1941-1951, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808176

RESUMO

What measurable physical properties allow one to distinguish surfactant-stabilised from Pickering emulsions? Whereas surfactants influence oil/water interfaces by lowering the oil/water interfacial tension, particles are assumed to have little effect on the interfacial tension. Here we perform interfacial tension (IFT) measurements on three different systems: (1) soybean oil and water with ethyl cellulose nanoparticles (ECNPs), (2) silicone oil and water with the globular protein bovine serum albumin (BSA), and (3) sodium dodecyl sulfate (SDS) solutions and air. The first two systems contain particles, while the third system contains surfactant molecules. We observe a significant decrease in interfacial tension with increasing particle/molecule concentration in all three systems. We analyse the surface tension data using the Gibbs adsorption isotherm and the Langmuir equation of state for the surface, resulting in surprisingly high adsorption densities for the particle-based systems. These seem to behave very much like the surfactant system: the decrease in tension is due to the presence of many particles at the interface, each with an adsorption energy of a few kBT. Dynamic interfacial tension measurements show that the systems are in equilibrium, and that the characteristic time scale for adsorption is much longer for particle-based systems than for surfactants, in line with their size difference. In addition, the particle-based emulsion is shown to be less stable against coalescence than the surfactant-stabilised emulsion. This leaves us with the conclusion that we are not able to make a clear distinction between the surfactant-stabilised and Pickering emulsions.

20.
Nat Commun ; 14(1): 1090, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841912

RESUMO

Deliquescence is a first-order phase transition, happening when a salt absorbs water vapor. This has a major impact on the stability of crystalline powders that are important for example in pharmacology, food science and for our environment and climate. Here we show that during deliquescence, the abundant salt sodium sulfate decahydrate, mirabilite (Na2SO4·10H2O), behaves differently than anhydrous salts. Using various microscopy techniques combined with Raman spectroscopy, we show that mirabilite crystals not only lose their facets but also become soft and deformable. As a result, microcrystals of mirabilite simultaneously behave crystalline-like in the core bulk and liquid-like at the surface. Defects at the surface can heal at a speed much faster than the deliquescence rate by the mechanism of visco-capillary flow over the surface. While magnesium sulfate hexahydrate (MgSO4⋅6H2O) behaves similarly during deliquescence, a soft and deformable state is completely absent for the anhydrous salts sodium chloride (NaCl) and sodium sulfate thenardite (Na2SO4). The results highlight the effect of crystalline water, and its mobility in the crystalline structure on the observed softness during deliquescence. Controlled hydrated salts have potential applications such as thermal energy storage, where the key parameter is relative humidity rather than temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA