RESUMO
Cannabielsoin (CBE) is primarily recognized as an oxidation byproduct of cannabidiol (CBD) and a minor mammalian metabolite of CBD. The pharmacological interactions between CBE and cannabinoid receptors remain largely unexplored, particularly with respect to cannabinoid receptor type 1 (CB1). The present study aimed to elucidate the interaction dynamics of CBE in relation to CB1 by employing cyclic adenosine monophosphate (cAMP) and ß-arrestin assays to assess its role as an agonist, antagonist, and positive allosteric modulator (PAM). To our knowledge, this is the first publication to investigate CBE's receptor activity in vitro. Our findings reveal that S-CBE acts as an agonist to CB1 with EC50 = 1.23 µg/mL (3.7 µM) in the cAMP assay. No agonist activity was observed in the ß-arrestin assay in concentrations up to 12 µM, suggesting a noteworthy affinity towards G-protein activation and the cAMP signaling pathway. Furthermore, in silico molecular docking simulations were conducted to provide a structural basis for the interaction between CBE and CB1, offering insights into the molecular determinants of its receptor affinity and functional selectivity.
RESUMO
Phytocannabinoids with seven-carbon alkyl chains (phorols) have gained a lot of attention, as they are commonly believed to be more potent versions of typical cannabinoids with shorter alkyl chains. At the time of this article, cannabidiphorol (CBDP) and tetrahydrocannabiphorol (THCP) can both be purchased in the North American market, even though their biological activities are nearly unknown. To investigate their relative potency, we conducted in vitro receptor-binding experiments with CBDP (cannabinoid CB1/CB2 receptor antagonism, serotonin 5HT-1A agonism, dopamine D2S (short form) agonism, and mu-opioid negative allosteric modulation) and compared the observed activity with that of CBD. To our knowledge, this is the first publication to investigate CBDP's receptor activity in vitro. A similar activity profile was observed for both CBD and CBDP, with the only notable difference at the CB2 receptor. Contrary to common expectations, CBD was found to be a slightly more potent CB2 antagonist than CBDP (p < 0.05). At the highest tested concentration, CBD demonstrated antagonist activity with a 33% maximum response of SR144528 (selective CB2 antagonist/inverse agonist). CBDP at the same concentration produced a weaker antagonist activity. A radioligand binding assay revealed that among cannabinoid and serotonin receptors, CB2 is likely the main biological target of CBDP. However, both CBD and CBDP were found to be significantly less potent than SR144528. The interaction of CBDP with the mu-opioid receptor (MOR) produced unexpected results. Although the cannabidiol family is considered to be a set of negative allosteric modulators (NAMs) of opioid receptors, we observed a significant increase in met-enkephalin-induced mu-opioid internalization when cells were incubated with 3 µM of CBDP and 1 µM met-enkephalin, a type of activity expected from positive allosteric modulators (PAMs). To provide a structural explanation for the observed PAM effect, we conducted molecular docking simulations. These simulations revealed the co-binding potential of CBDP (or CBD) and met-enkephalin to the MOR.
Assuntos
Receptor CB2 de Canabinoide , Humanos , Receptor CB2 de Canabinoide/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Canabidiol/química , Receptores Opioides mu/metabolismo , Receptores Opioides mu/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Ligação Proteica , Canabinoides/metabolismo , Canabinoides/farmacologia , Canabinoides/química , Dronabinol/farmacologia , Dronabinol/análogos & derivados , Dronabinol/química , Dronabinol/metabolismo , Receptores de Dopamina D2/metabolismo , AnimaisRESUMO
Tetrahydrocannabivarin (THCV) is a phytocannabinoid that is becoming popular across the North American cannabis market. THCV has been reported to reduce blood sugar and act as an appetite suppressant in several independent pre-clinical studies, which has earned it the popular nickname of "diet weed," despite few human studies of these effects. Additionally, THCV is usually and incorrectly categorized as an intoxicating analogue of tetrahydrocannabinol (THC), which causes confusion among both consumers and regulators. In this article, we examine what is known pre-clinically and clinically about THCV, as well as highlight mechanisms of action, in order to clarify the scientific differences between THCV and THC. THCV, although structurally similar to THC, has distinct pharmacological activity and physiological effects at the doses currently reported in the literature. We highlight areas of opportunity for further THCV research in order to determine the full and appropriate potential for unique health, wellness, and therapeutic applications of this compound.
RESUMO
Even slight structural differences between phytocannabinoid isomers are usually enough to cause a change in their biological properties. In this study, we used in vitro CB1 agonism/antagonism assays to compare the receptor binding functionality of THCV (tetrahydrocannabivarin) and HHC (hexahydrocannabinol) isomers and applied molecular docking to provide an explanation for the difference in the activities. No CB1 agonism was observed for ∆9- and ∆8-THCV. Instead, both isomers antagonized CP 55940, with ∆9-THCV being approximately two times more potent than the ∆8 counterpart (IC50 = 52.4 nM and 119.6 nM for ∆9- and ∆8-THCV, respectively). Docking simulations found two binding poses for THCV isomers, one very similar to ∆9-THC and one newly discovered pose involving the occupation of side pocket 1 of the CB1 receptor by the alkyl chain of the ligand. We suggested the latter as a potential antagonist pose. In addition, our results established 9R-HHC and 9S-HHC among partial agonists of the CB1 receptor. The 9R-HHC (EC50 = 53.4 nM) isomer was a significantly more potent agonist than 9S (EC50 = 624.3 nM). ∆9-THC and 9R-HHC showed comparable binding poses inside the receptor pocket, whereas 9S-HHC adopted a new and different binding posture that can explain its weak agonist activity.
RESUMO
Some individuals attempt to alleviate menstrual-related symptoms (MRS) by using cannabis and report having expectations that cannabis can improve MRS; however, no study has examined the effect of cannabinoids on MRS. The present study is a pre-post, randomized, open-label trial that aimed to examine the effects of oral cannabidiol (CBD) isolate for alleviating MRS. Participants were assigned randomly to one of two open-label dosing groups of CBD softgels (160 mg twice a day, BID, n = 17; 320 mg BID, n = 16) and completed a 1-month baseline period. Following baseline, participants were instructed to consume CBD starting the first day they believed they experienced symptoms each month and to take their assigned dose daily for 5 consecutive days for three CBD-consumption months. We examined differences in MRS and related outcomes between baseline and 3 months of CBD consumption. Results revealed reductions (in both dosing groups) in MRS, irritability, anxiety, global impression of change, stress, and subjective severity scores when comparing baseline to all 3 months of CBD consumption. Depression scores did not change in either dosing group. Findings suggest that CBD may have the potential for managing MRS. Importantly, changes in symptoms appeared in the first month of CBD consumption and persisted over the 3 consumption months. Further research is warranted comparing the effects of CBD to placebo (a limitation of the study) and examining the potential to optimize CBD consumption for reducing MRS (e.g., combining CBD with terpenes; varying routes and timing of administration). (PsycInfo Database Record (c) 2024 APA, all rights reserved).
RESUMO
Products containing cannabidiol (CBD) have proliferated after the 2018 Farm Bill legalized hemp (cannabis with ≤0.3% delta-9-tetrahydrocannabinol (Δ9-THC)). CBD-containing topical products have surged in popularity, but controlled clinical studies on them are limited. This study characterized the effects of five commercially available hemp-derived high CBD/low Δ9-THC topical products. Healthy adults (N = 46) received one of six study drugs: a CBD-containing cream (N = 8), lotion (N = 8), patch (N = 7), balm (N = 8), gel (N = 6) or placebo (N = 9; matched to an active formulation). The protocol included three phases conducted over 17 days: (i) an acute drug application laboratory session, (ii) a 9-day outpatient phase with twice daily product application (visits occurred on Days 2, 3, 7 and 10) (iii) a 1-week washout phase. In each phase, whole blood, oral fluid and urine specimens were collected and analyzed via liquid chromatography with tandem mass spectrometry (LC-MS-MS) for CBD, Δ9-THC and primary metabolites of each and pharmacodynamic outcomes (subjective, cognitive/psychomotor and physiological effects) were assessed. Transdermal absorption of CBD was observed for three active products. On average, CBD/metabolite concentrations peaked after 7-10 days of product use and were highest for the lotion, which contained the most CBD and a permeation enhancer (vitamin E). Δ9-THC/metabolites were below the limit of detection in blood for all products, and no urine samples tested "positive" for cannabis using current US federal workplace drug testing criteria (immunoassay cut-off of 50 ng/mL and confirmatory LC-MS-MS cut-off of 15 ng/mL). Unexpectedly, nine participants (seven lotions, one patch and one gel) exhibited Δ9-THC oral fluid concentrations ≥2 ng/mL (current US federal workplace threshold for a "positive" test). Products did not produce discernable pharmacodynamic effects and were well-tolerated. This study provides important initial data on the acute/chronic effects of hemp-derived topical CBD products, but more research is needed given the diversity of products in this market.
Assuntos
Canabidiol , Cannabis , Alucinógenos , Adulto , Humanos , Cromatografia Líquida , AlimentosRESUMO
Caffeine and cannabidiol (CBD) are commonly consumed by the general population, particularly among young adults; however, there is little research on the simultaneous effects of caffeine and CBD. The present study aimed to examine the simultaneous self-reported effects of caffeine and CBD in young healthy adults. Participants (N = 54) who reported daily caffeine use (> 200 mg) attended one experimental session via Zoom and were assigned randomly to receive caffeine (200 mg) combined with either a placebo or CBD (25, 50, 80, 160, or 240 mg). Participants completed subjective drug effects measures at baseline and then ingested caffeine and their assigned CBD dose. Throughout the 140-min session, participants completed self-report measures. The primary outcomes of this study were measures of general drug effects and anxiety. After caffeine and CBD administration, few effects were observed in self-reported measures of general drug effects. No negative effects emerged as a result of combined caffeine and CBD administration. These results should be interpreted cautiously given the preliminary nature and variability in outcomes. The present study findings suggest that combinations of the tested doses of caffeine and CBD do not alter subjective drug effects; further, no negative effects emerged, providing preliminary safety evidence for using these products simultaneously. Further research is needed to examine the simultaneous and/or interactive nature of caffeine and CBD on other caffeine-induced outcomes (e.g., cognition and physiological effects) and will be critical for informing future regulatory decisions regarding caffeine: CBD mixtures. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
RESUMO
BACKGROUND: Cannabinoid-containing products are marketed to athletes as promoting recovery, in spite of a lack of data on their safety and effects. This randomized, double-blind, placebo-controlled, repeated-dose pilot study tested the safety, tolerability, and preliminary effects on recovery of a formulation containing cannabidiol (CBD; 35 mg), cannabigerol (CBG; 50 mg), beta caryophyllene (BCP; 25 mg), branched-chain amino acids (BCAAs; 3.8 g), and magnesium citrate (420 mg). METHODS: Exercise-trained individuals (N = 40) underwent an experimental induction of delayed onset muscle soreness (DOMS) and completed follow-up visits 24-, 48-, and 72-hours post-DOMS. Participants were randomized to active or placebo formulation, and consumed the formulation twice per day for 3.5 days. RESULTS: There was one adverse event (AE) in the active group (diarrhea) and two AEs in placebo (dry mouth; eye rash/swollen eye). There was 100% self-reported compliance with formulation consumption across the two groups. For the primary outcome of interest, the estimate of effect for ratings of average soreness/discomfort 72 hours post-DOMS between active and placebo groups was -1.33 (85% confidence interval = -2.55, -0.10), suggesting moderate evidence of a treatment difference. The estimate of effect for the outcome of ratings of interference of soreness, discomfort, or stiffness on daily activities at work or home 48 hours post-DOMS was -1.82 (95% confidence interval = -3.64, -0.01), indicating a treatment difference of potential clinical importance. There was no significant effect between active and placebo groups on objective measures of recovery, sleep quality, or mood disturbance. CONCLUSIONS: The tested formulation reduced interference of DOMS on daily activities, demonstrating its improvement on a functional aspect of recovery.
Assuntos
Canabidiol , Mialgia , Humanos , Mialgia/tratamento farmacológico , Canabidiol/uso terapêutico , Projetos Piloto , PósRESUMO
The present study sought to determine the effects of cannabinol (CBN) alone and in combination with cannabidiol (CBD) on sleep quality. This was a double-blind, randomized, placebo-controlled study conducted between May and November 2022. Participants were randomized to receive either (a) placebo, (b) 20 mg CBN, (c) 20 mg CBN + 10 mg CBD, (d) 20 mg CBN + 20 mg CBD, or (e) 20 mg CBN + 100 mg CBD for seven consecutive nights. Participants were 18-55 years of age who self-rated sleep quality as "very poor" or "poor." The primary endpoint was sleep quality, while secondary endpoints included sleep onset latency, number of awakenings, wake after sleep onset (WASO), overall sleep disturbance, and daytime fatigue. In a modified intent-to-treat analyses (N = 293), compared to placebo, 20 mg CBN demonstrated a nonsignificant but potentially meaningful effect on sleep quality (OR [95% CI] = 2.26 [0.93, 5.52], p = .082) and significantly reduced number of awakenings (95% CI [-0.96, -0.05], p = .025) and overall sleep disturbance (95% CI [-2.59, -0.14], p = .023). There was no difference from placebo among any group for sleep onset latency, WASO, or daytime fatigue (all p > .05). Individuals receiving 20 mg CBN demonstrated reduced nighttime awakenings and overall sleep disturbance relative to placebo, with no impact on daytime fatigue. The addition of CBD did not positively augment CBN treatment effects. No differences were observed for latency to sleep onset or WASO. Findings suggest 20 mg of CBN taken nightly may be helpful for improving overall sleep disturbance, including the number of times one wakes up throughout the night, without impacting daytime fatigue. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
RESUMO
Introduction: Minor cannabinoids are increasingly being consumed in oral formulations (i.e., edibles, tinctures) for medical and nonmedical purposes. This study examined the pharmacokinetics (PKs) of cannabinoids tetrahydrocannabivarin (THCV), cannabichromene (CBC), cannabinol (CBN), and delta-8-tetrahydrocannabinol (D8-THC) after the first and last oral dose during a 14-day administration period. Materials and Methods: Sprague-Dawley rats (N=6 animals/dose, 50% female) were given an assigned dose of one of four cannabinoids (THCV=3.2-100 mg/kg, CBC=3.2-100 mg/kg, CBN=1-100 mg/kg, or D8-THC=0.32-10 mg/kg) or vehicle (medium-chain triglyceride oil) through oral gavage once daily for 14 days. Blood was collected 45 min and 1.5, 3, and 24 h following the first dose (day 1) and the last dose (day 14) of repeated oral cannabinoid treatment for PK analysis. Outcomes of interest included time to maximum concentration (Tmax), maximum concentration (Cmax), and area under the concentration versus time curve (AUClast). Dose-normalized (DN) Cmax and DN AUClast were also calculated. Brain tissue was collected 24 h post-administration of the first (day 1) and the last (day 14) dose of each cannabinoid to determine concentrations in brain. Results: All cannabinoids tested were detectable in plasma after single and 14-day repeated dosing. DN Cmax and DN AUClast were highest for D8-THC, followed by CBC, CBN, and THCV. There was no sex difference observed in cannabinoid kinetics. Accumulation of D8-THC in plasma was observed after 14 days of administration. THCV levels in plasma were lower on day 14 compared to day 1, indicating potential adaptation of metabolic pathways and increased drug elimination. Cannabinoids were detected in brain tissue 24 h post-administration of the first and the last dose of 17-100 mg/kg THCV, 3.2-100 mg/kg CBC, 10-100 mg/kg CBN, and 10 mg/kg D8-THC. Conclusions: THCV, CBC, CBN, and D8-THC produced detectable levels in plasma and translocated to brain tissue after the first dose (day 1) and the last dose (day 14) of repeated oral dosing. Examination of PKs of these minor cannabinoids in blood and brain provides a critical step for informing target dose ranges and dosing schedules in future studies that evaluate the potential effects of these compounds.
Assuntos
Encéfalo , Plasma , Feminino , Ratos , Animais , Masculino , Ratos Sprague-Dawley , CanabinolRESUMO
Introduction: The psychoactive properties of Δ10-THC isomers (trans- and cis-Δ10-THC) are poorly understood. To shed more light on the biological effects of these compounds, we studied in vitro receptor binding of Δ10-THC isomers at cannabinoid CB1 and CB2 receptors. Materials and Methods: We first optimized and simplified catalytic synthesis of trans- and cis-Δ10-THC to allow their safe and cheap large-scale synthesis. In our synthesis, BuLi was replaced with KOtBu, and DMSO/anisole or NEt3/heptane solvent systems were used instead of HMPA/toluene. Single crystal X-ray analysis confirmed the structure of both isomers and the configuration of their chiral centers. Results: In the radioligand replacement assay, both isomers showed strong affinity toward the CB1 receptor, with IC50=29.1 nM for the trans isomer and IC50=294.2 nM for the cis counterpart. However, the IC50 values were significantly higher than that of Δ9-THC (2.1 nM), a naturally occurring psychoactive component of cannabis sativa, suggesting a lower affinity of Δ10-THCs toward this receptor. In function assays, in contrast to Δ9-THC, both isomers failed to show any agonist properties at concentrations up to 10 µM suggesting a lack of THC-like psychoactivity for trans- and cis-Δ10-THC. Conclusions: Our results established Δ10-THC isomers among antagonists of the CB1 receptor as both cis and trans isomers antagonized CP55,490 with IC50=460 nM for trans and IC50=1040 nM for cis. This functional property has not been previously observed for any other THC isomers.
Assuntos
Bioensaio , Receptor CB1 de Canabinoide , Ensaio Radioligante , Catálise , HeptanosRESUMO
Introduction: Despite growing consumer interest and market availability, the safety of minor cannabinoids, generally present in low concentrations in Cannabis sativa L., is not well understood. Materials and Methods: Cannabichromene (CBC; 3.2, 10, 17, 22, 32, or 100 mg/kg-bw/day), cannabinol (CBN; 1, 3.2, 10, 17, 32, or 100 mg/kg-bw/day), delta-8-tetrahydrocannabinol (D8-THC; 0.32, 1, 3.2, or 10 mg/kg-bw/day), tetrahydrocannabivarin (THCV; 3.2, 10, 17, 22, 32, or 100 mg/kg-bw/day), and vehicle (medium-chain triglyceride oil) preparations were administered via oral gavage once daily for 14 days to Sprague Dawley rats. Changes in behavior, body weight, food consumption, clinical pathology, organ weights, body temperature, and thermal pain sensitivity (tail flick assay) were assessed. Select organ tissues were collected at terminal necropsy and fixed for histopathological examination. Results: No treatment-related deaths were observed throughout the study, and cannabinoids were generally well tolerated. While some significant trends in body weight differences from controls (increases and decreases) were observed, these occurred independently of food consumption. Overall, differences in serum chemistry and hematology parameters between cannabinoid groups and their respective control groups were considered to occur due to biological variation among rats. No treatment-related gross abnormalities were observed in examined organs. Significant changes in absolute and relative organ weights occurred primarily in males and were generally of negligible magnitude. There were no biologically significant histopathological observations. While pain tolerance was significantly improved in animals treated with D8-THC (3.2 and 10 mg/kg-bw/day, day 14), results across minor cannabinoids were inconsistent and warrant further study. Conclusion: Minor cannabinoids were well tolerated across 14 days of daily oral administration at the doses assessed. Modest, dose-dependent trends in relative organ weights and serum chemistry parameters warrant exploration at higher oral doses. These data will assist in dose selection for future studies investigating the long-term safety and effects of CBC, CBN, D8-THC, and THCV.
Assuntos
Canabinol , Limiar da Dor , Masculino , Ratos , Animais , Medição da Dor , Ratos Sprague-Dawley , Administração Oral , Peso CorporalRESUMO
Introduction: Tetrahydrocannabivarin (THCV) is an understudied cannabinoid that appears to have effects that vary as a function of dose. No human study has evaluated the safety and nature of effects in a wide range of THCV doses. Methods: This was a two-phase, dose-ranging, placebo-controlled trial of the Δ8 isomer of oral THCV in healthy adults. Phase 1 utilized an unblinded, single-ascending dose design (n=3). Phase 2 used a double-blind, randomized, within-participant crossover design (n=18). Participants received single acute doses of placebo and 12.5, 25, 50, 100, and 200 mg of THCV. Safety measures and subjective and cognitive effects were assessed predose and up to 8 h postdose. Results: Most adverse events (AEs; 55/60) were mild. Euphoric mood was the most common AE. The 12.5, 25, and 200 mg doses produced significantly lower minimum times to complete the digit vigilance test (ps=0.01). The 25 mg dose showed elevations on mean ratings of "energetic" at 1-, 2-, and 4-h postdose, but the maximum postdose rating for this dose did not achieve statistical significance relative to placebo ([95% confidence interval]=3.2 [-0.5 to 6.9], p=0.116). The 100 and 200 mg doses showed elevations on ratings of "feel a drug effect" and "like the drug effect." Almost all urine drug screens (78/79) at 8 h postdose in the active THCV conditions tested positive for tetrahydrocannabinol (THC). Conclusion: All THCV doses displayed a favorable safety profile. Several THCV doses showed a preliminary signal for improved sustained attention, but the effect was not dose dependent. Though mild and not associated with impairment, THC-like effects were observed at higher THCV doses. Oral THCV-containing products could lead to positive urine drug screens for THC. ClinicalTrials.gov ID: NCT05210634.
Assuntos
Canabinoides , Emoções , Adulto , Humanos , Voluntários Saudáveis , Método Duplo-Cego , EuforiaRESUMO
Introduction: Cannabis contains a multitude of phytocannabinoids and terpenes in addition to its main psychoactive constituent, delta-9-tetrahydrocannabinol (D9-THC). It is believed that the combination of minor cannabinoids and terpenes with D9-THC may impact the subjective and physiological effects of D9-THC. In this study, select minor cannabinoids (cannabigerol [CBG], cannabidivarin [CBDV], cannabichromene [CBC], tetrahydrocannabivarin [THCV], cannabigerolic acid [CBGa], and cannabidiolic acid [CBDa]) and terpenes (beta-caryophyllene and linalool) were evaluated for their potential to decrease the interoceptive effects of D9-THC using drug discrimination methods. Materials and Methods: Male and female rats (n=16; 50% female) were trained to discriminate D9-THC from vehicle. Following training, D9-THC was administered 45 min pre-session, followed by administration of a minor cannabinoid or terpene (or vehicle) 15 min pre-session. CBG, CBDV, CBC, and THCV were administered at doses of 3-30 mg/kg; CBGa and CBDa were administered at doses of 10-100 mg/kg; beta-caryophyllene and linalool were administered at doses of 10-30 mg/kg. Percentage of D9-THC responding (%) was calculated to assess changes to D9-THCs interoceptive effects. Results: CBG, CBDV, CBC, THCV, CBGa, CBDa, beta-caryophyllene, and linalool had little effect on percent D9-THC responding in either sex. No compounds lowered percent D9-THC responding to 50% or below. THCV, CBC, CBDa, and beta-caryophyllene in combination with D9-THC decreased response rates compared with D9-THC alone. Conclusions: The minor cannabinoids and terpenes examined in the current study did not alter the discriminative stimulus effects of D9-THC. These results suggest that these compounds are unlikely to lower the psychoactive effects of D9-THC in human users.
Assuntos
Dronabinol , Terpenos , Humanos , Feminino , Masculino , Animais , Ratos , Terpenos/farmacologia , Dronabinol/farmacologia , ExcipientesRESUMO
Introduction: Cannabidiol (CBD), a nonintoxicating cannabinoid, may be involved in bone remodeling, but human studies are limited. In this case series, we explored the effects of oral CBD administration on bone turnover. Materials and Methods: Two postmenopausal women with osteopenia (T-score=-1 to -2.5) were randomized to receive 100 or 300 mg CBD daily (oral, bis in die [twice per day]) for 12 weeks. Serum markers of bone resorption (carboxyl-terminal collagen crosslinks [CTx]) and bone formation (procollagen type 1 N-terminal propeptide [P1NP], bone-specific alkaline phosphatase [BSAP], and osteocalcin [OC]); safety measures; plasma concentrations of CBD and metabolites; sleep disturbance; symptoms of depression, anxiety, and stress; and quality of life, were assessed. Results: CBD was well tolerated, with no clinically significant change in vital signs, hematology, chemistry, or urinalysis, and no adverse events reported. Reductions (% change vs. baseline) in CTx (-8.5%, -28.1%), P1NP (-9.9%, -39.5%), BSAP (-12.7%, -74.8%), and OC (-16.0%, -6.7%) were observed after 12 weeks of oral administration of 100 or 300 mg CBD daily, respectively. The two participants self-reported consuming 95.3% and 98.8% of CBD doses, respectively. CBD and select metabolites were measurable in plasma after 4 and 12 weeks of CBD treatment. No notable changes in sleep disturbance, depression, anxiety, stress, or quality of life were observed. Conclusions: CBD was well tolerated after 12 weeks of twice-daily oral administration and was associated with reduction in measured markers of bone turnover. Compliance with CBD treatment was good. Large-scale randomized clinical trials into the bone protective effects of CBD in postmenopausal women are warranted.
Assuntos
Doenças Ósseas Metabólicas , Canabidiol , Humanos , Feminino , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Pós-Menopausa , Qualidade de Vida , Doenças Ósseas Metabólicas/tratamento farmacológico , Administração Oral , Fosfatase Alcalina , OsteocalcinaRESUMO
Background: Cannabis and its primary psychoactive constituent delta-9-tetrahydrocannabinol (D9-THC) produce biphasic, dose-dependent effects on anxiety. In addition to D9-THC, cannabis contains other "minor" cannabinoids and terpenes with purported therapeutic potential for the treatment of anxiety. Empirical data on potential therapeutic effects of these compounds is limited. The current study evaluated the effects of selected minor cannabinoids and terpenes in a battery of tests sensitive to anxiolytic and anxiogenic drugs. Methods: In Experiment 1, adult male Sprague Dawley rats (N=7-8/group) were administered acute oral doses of one of five minor cannabinoids: delta-8-tetrahydrocannabinol (D8-THC; 10 mg/kg), tetrahydrocannabivarin (32 mg/kg), cannabidiolic acid (32 mg/kg), cannabidivarin (32 mg/kg), and cannabigerol (100 mg/kg), or one of five terpenes: D-limonene (17 mg/kg), âº-pinene (100 mg/kg), âº-terpineol (10 mg/kg), bisabolol (100 mg/kg), and ß-caryophyllene (17 mg/kg), or vehicle (medium-chain triglycerides [MCT] oil). Ethyl alcohol was tested as an active comparator. Thirty minutes post-administration, the marble burying test, the three-chamber social interaction test, and the novelty-induced hypophagia test were completed; motor activity was assessed throughout testing. Experiment 2 examined the potential anxiolytic effects of minor cannabinoids when administered chronically; rats administered MCT oil or minor cannabinoids in Experiment 1 continued receiving once-daily doses for 21 days and were assessed using the same test battery after 7, 14, and 21 days of administration. Results and Conclusions: When compared to vehicle, acute administration of bisabolol and D-limonene increased the amount of food consumed and bisabolol-, D-limonene-, âº-pinene-, and ß-caryophyllene decreased percent time spent in the outer zone in the novelty-induced hypophagia test, suggestive of an anxiolytic effect. Only ethanol increased social interaction. After acute administration, anxiogenic effects in the marble burying test were observed for D8-THC, but not for other minor cannabinoids and terpenes. Throughout chronic administration, only D8-THC displayed anxiogenic effects in the novelty-induced hypophagia test. The other cannabinoids did not show anxiolytic or anxiogenic effects in any of the tests at the doses or times tested. The minor cannabinoids and terpenes did not impair or stimulate general motor activity. These data provide a foundation for future studies investigating cannabinoid/terpene interactions.
Assuntos
Ansiolíticos , Canabinoides , Cannabis , Alucinógenos , Masculino , Ratos , Animais , Terpenos/farmacologia , Ansiolíticos/farmacologia , Limoneno , Ratos Sprague-Dawley , Agonistas de Receptores de Canabinoides , Administração Oral , Terebintina , Carbonato de Cálcio , Canabinoides/farmacologiaRESUMO
Introduction: A growing number of females report consuming cannabis products. There is a paucity of data on sex differences in safety and subjective effects after repeated use of varying oral doses of Δ9-tetrahydrocannabinol (THC; the primary psychoactive constituent of cannabis). Materials and Methods: Data were from two randomized, double-blind, placebo-controlled, multiple-dose, between-subject trials of two THC-containing oral cannabis products. Healthy adults received placebo, low-dose THC (â¼2.5 or â¼5 mg per dose), or high-dose THC (â¼7.5 or â¼10 mg per dose) twice daily for 7 days. There were 38 males (8 placebo, 17 low-dose THC, 13 high-dose THC) and 46 females (8 placebo, 17 low-dose THC, 21 high-dose THC). Analyses compared adverse events (AEs) and subjective effects between males and females, by THC dose. Results: In the placebo and low-dose THC groups, there were no sex differences in the relative rate of AEs. In the high-dose THC group, females versus males reported 3.08 (95% confidence interval [CI]=1.31-8.33) times as many AEs. There were no significant interactions of sex×low-dose THC group for any subjective effect. In the high-dose THC group, females versus males reported greater "relaxed" ratings (b=15.14, 95% CI=1.44-28.84, p=0.027), whereas in the placebo group, males versus females reported greater ratings of "liking the effect" (b=-30.01, 95% CI=2.77-57.26, p=0.028). Although analyses were underpowered to assess the sex×THC dose×day interaction, the initial sex disparity in AEs and some subjective effects in the high-dose THC group appeared to shrink after the first day. Conclusions: In this exploratory analysis, sex differences in some responses to oral THC were nuanced. Females appeared more sensitive than males to AEs and some subjective effects at higher but not lower doses. Males reported higher ratings than females on some subjective effects in response to placebo. Initial sex differences in response to higher doses of oral THC tended to diminish over 7 days of dosing. If replicated, findings could help inform sex-specific dosing strategies of medical cannabis products and could help educate medical cannabis patients on any temporality of effects.
RESUMO
Consumer use of hemp-derived products continues to rise, underscoring the need to establish evidence-based safety guidance. The present study sought to develop recommendations for oral upper intake limits of cannabidiol (CBD) isolate. Sufficiently robust and reliable data for this purpose were identified from published human clinical trials and guideline-compliant toxicity studies in animal models. Based on the metrics used in this assessment, a potential Acceptable Daily Intake (ADI) value of 0.43 mg/kg-bw/d (e.g., 30 mg/d for 70-kg adult) was determined for the general population based on liver effects in human studies. This value applies to the most sensitive subpopulations, including children, over a lifetime of exposure and from all sources, including food. For dietary supplements with adequate product labeling intended for use by healthy adults only, a potential Upper Intake Limit (UL) of 70 mg/d was determined based on reproductive effects in animals. For healthy adults, except those trying to conceive, or currently pregnant or lactating, a conservative dietary supplement UL of 100 mg/d was identified based on liver effects; however, as the target population excludes individuals at risk for liver injury, an alternative dietary supplement UL of 160 mg/d for this population can also be considered.
RESUMO
Introduction: Oral cannabidiol (CBD) product use is increasingly growing among women; however, there is a lack of data on sex differences in the pharmacokinetics (PKs) of CBD and its primary metabolites, 7-hydroxy-CBD (7-OH-CBD) and 7-carboxy-CBD (7-COOH-CBD), after repeated doses. Materials and Methods: The present study is a secondary analysis of data from a randomized, double-blind, placebo-controlled multiple-dose trial of a commercially available, CBD-dominant oral cannabis product. Healthy participants (n=17 males and 15 females) were randomized to receive 120 to 480 mg of CBD daily for 7 days. Dosing groups were pooled for all analyses due to sample size limitations. Analyses compared plasma PK parameters by sex, day, and sex×day. Results: For raw PK parameters for CBD and metabolites, there were no statistically significant effects of sex×day or sex (all p-values >0.05). For metabolite-to-parent ratios (MPRs) of AUC0-t, there were significant effects of the sex×day interactions for 7-OH-CBD (F=6.89, p=0.016) and 7-COOH-CBD (F=5.96, p=0.021). For 7-OH-CBD, follow-up analyses showed significant simple effects of day within females (t=4.13, p<0.001), but not within males (t=0.34, p=0.73), such that 7-OH-CBD MPRs increased significantly from day 1 to 7 for females, but not for males. For 7-COOH-CBD, follow-up analyses revealed significant simple effects of day within females (t=8.24, p<0.001) and males (t=5.20, p<0.001), therefore 7-COOH-CBD MPRs increased significantly from day 1 to 7 in both sexes, but the increase was significantly greater among females than among males. Within dosing days, there were no statistically significant simple effects of sex on MPRs of 7-OH-CBD or 7-COOH-CBD. Conclusions: Females exhibited greater relative exposure to CBD metabolites in plasma over time, which may reflect sex differences in CBD metabolism or elimination. Further research assessing the safety implications of higher relative exposure to CBD metabolites over longer periods of time is warranted to mirror typical consumer use patterns.
RESUMO
Consumer use of cannabidiol (CBD) for personal wellness purposes has garnered much public interest. However, safety-related data on CBD in the public domain are limited, including a lack of quality studies evaluating its genotoxic potential. The quality of available studies is limited due to the test material used (e.g., low CBD purity) and/or study design, leading some global regulatory agencies to highlight genotoxicity as an important data gap for CBD. To address this gap, the genotoxic potential of a pure CBD isolate was investigated in a battery of three genotoxicity assays conducted according to OECD testing guidelines. In an in vitro microbial reverse mutation assay, CBD up to 5000 µg/plate was negative in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA, with and without metabolic activation. Testing in an in vitro micronucleus assay was negative in human TK6 cells up to 10-11 µg/mL, with and without metabolic activation. Finally, an in vivo micronucleus assay conducted in male and female rats was negative for genotoxicity up to 1000 mg/kg-bw/d. Bioanalysis of CBD and its primary metabolite, 7-carboxy CBD, confirmed a dose-related increase in plasma exposure. Together, these assays indicate that CBD is unlikely to pose a genotoxic hazard.