Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Science ; 385(6704): eadd8394, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963856

RESUMO

Transcribed enhancer maps can reveal nuclear interactions underpinning each cell type and connect specific cell types to diseases. Using a 5' single-cell RNA sequencing approach, we defined transcription start sites of enhancer RNAs and other classes of coding and noncoding RNAs in human CD4+ T cells, revealing cellular heterogeneity and differentiation trajectories. Integration of these datasets with single-cell chromatin profiles showed that active enhancers with bidirectional RNA transcription are highly cell type-specific and that disease heritability is strongly enriched in these enhancers. The resulting cell type-resolved multimodal atlas of bidirectionally transcribed enhancers, which we linked with promoters using fine-scale chromatin contact maps, enabled us to systematically interpret genetic variants associated with a range of immune-mediated diseases.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Análise de Célula Única , Linfócitos T Auxiliares-Indutores , Sítio de Iniciação de Transcrição , Transcrição Gênica , Humanos , Cromatina/metabolismo , Cromatina/genética , Linfócitos T Auxiliares-Indutores/imunologia , Regiões Promotoras Genéticas , Diferenciação Celular , Linfócitos T CD4-Positivos/imunologia
2.
Eur J Immunol ; 53(5): e2149775, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36653901

RESUMO

Type 1 regulatory (Tr1) T cells are currently defined all T cells with regulatory functions that lack FOXP3 expression and produce IL-10. Tr1 cells are heterogeneous, and the different reported properties of Tr1-cell populations have caused some confusion in the field. Moreover, understanding the role of Tr1 cells in immune-mediated diseases has been hampered by the lack of a lineage-defining transcription factor. Several independent studies indicated recently that the transcription factor Eomesodermin (EOMES) could act as a lineage-defining transcription factor in a population of IL-10 and IFN-γ co-producing Tr1-like cells, since EOMES directly induces IFN-γ and cytotoxicity, enhances IL-10, and antagonizes alternative T-cell fates. Here, we review the known properties of EOMES+ Tr1-like cells. They share several key characteristics with other Tr1 cells (i.e., "Tr1-like"), namely high IL-10 production, cytotoxicity, and suppressive capabilities. Notably, they also share some features with FOXP3+ Tregs, like downregulation of IL-7R and CD40L. In addition, they possess several unique, EOMES-dependent features, that is, expression of GzmK and IFN-γ, and downregulation of type-17 cytokines. Published evidence indicates that EOMES+ Tr1-like cells play key roles in graft-versus-host disease, colitis, systemic autoimmunity and in tumors. Thus, EOMES+ Tr1-like cells are key players of the adaptive immune system that are involved in several different immune-mediated diseases.


Assuntos
Interleucina-10 , Linfócitos T Reguladores , Interleucina-10/metabolismo , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Biologia
3.
Cell Death Differ ; 29(3): 614-626, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34845371

RESUMO

High Grade Serous Ovarian cancer (HGSOC) is a major unmet need in oncology, due to its precocious dissemination and the lack of meaningful human models for the investigation of disease pathogenesis in a patient-specific manner. To overcome this roadblock, we present a new method to isolate and grow single cells directly from patients' metastatic ascites, establishing the conditions for propagating them as 3D cultures that we refer to as single cell-derived metastatic ovarian cancer spheroids (sMOCS). By single cell RNA sequencing (scRNAseq) we define the cellular composition of metastatic ascites and trace its propagation in 2D and 3D culture paradigms, finding that sMOCS retain and amplify key subpopulations from the original patients' samples and recapitulate features of the original metastasis that do not emerge from classical 2D culture, including retention of individual patients' specificities. By enabling the enrichment of uniquely informative cell subpopulations from HGSOC metastasis and the clonal interrogation of their diversity at the functional and molecular level, this method provides a powerful instrument for precision oncology in ovarian cancer.


Assuntos
Ascite , Neoplasias Ovarianas , Ascite/genética , Ascite/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/patologia , Medicina de Precisão , Esferoides Celulares/patologia
5.
Sci Rep ; 11(1): 18043, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508139

RESUMO

Interferons (IFNs) are key cytokines involved in alerting the immune system to viral infection. After IFN stimulation, cellular transcriptional profile critically changes, leading to the expression of several IFN stimulated genes (ISGs) that exert a wide variety of antiviral activities. Despite many ISGs have been already identified, a comprehensive network of coding and non-coding genes with a central role in IFN-response still needs to be elucidated. We performed a global RNA-Seq transcriptome profile of the HCV permissive human hepatoma cell line Huh7.5 and its parental cell line Huh7, upon IFN treatment, to define a network of genes whose coordinated modulation plays a central role in IFN-response. Our study adds molecular actors, coding and non-coding genes, to the complex molecular network underlying IFN-response and shows how systems biology approaches, such as correlation networks, network's topology and gene ontology analyses can be leveraged to this aim.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Interferons/metabolismo , Biologia de Sistemas/métodos , Transcriptoma , Sítios de Ligação , Linhagem Celular Tumoral , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Fatores Reguladores de Interferon/metabolismo , Interferons/farmacologia , Neoplasias Hepáticas , Motivos de Nucleotídeos , Ligação Proteica
6.
Science ; 372(6542)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958447

RESUMO

Deciphering how the human striatum develops is necessary for understanding the diseases that affect this region. To decode the transcriptional modules that regulate this structure during development, we compiled a catalog of 1116 long intergenic noncoding RNAs (lincRNAs) identified de novo and then profiled 96,789 single cells from the early human fetal striatum. We found that D1 and D2 medium spiny neurons (D1- and D2-MSNs) arise from a common progenitor and that lineage commitment is established during the postmitotic transition, across a pre-MSN phase that exhibits a continuous spectrum of fate determinants. We then uncovered cell type-specific gene regulatory networks that we validated through in silico perturbation. Finally, we identified human-specific lincRNAs that contribute to the phylogenetic divergence of this structure in humans. This work delineates the cellular hierarchies governing MSN lineage commitment.


Assuntos
Atlas como Assunto , Corpo Estriado/citologia , Corpo Estriado/embriologia , Neurogênese/genética , RNA Longo não Codificante/genética , Análise de Célula Única , Fatores de Transcrição/genética , Feto , Neurônios GABAérgicos/metabolismo , Humanos , RNA-Seq , Transcrição Gênica
7.
Nat Immunol ; 22(6): 735-745, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34017124

RESUMO

Regulatory T (Treg) cells are a barrier for tumor immunity and a target for immunotherapy. Using single-cell transcriptomics, we found that CD4+ T cells infiltrating primary and metastatic colorectal cancer and non-small-cell lung cancer are highly enriched for two subsets of comparable size and suppressor function comprising forkhead box protein P3+ Treg and eomesodermin homolog (EOMES)+ type 1 regulatory T (Tr1)-like cells also expressing granzyme K and chitinase-3-like protein 2. EOMES+ Tr1-like cells, but not Treg cells, were clonally related to effector T cells and were clonally expanded in primary and metastatic tumors, which is consistent with their proliferation and differentiation in situ. Using chitinase-3-like protein 2 as a subset signature, we found that the EOMES+ Tr1-like subset correlates with disease progression but is also associated with response to programmed cell death protein 1-targeted immunotherapy. Collectively, these findings highlight the heterogeneity of Treg cells that accumulate in primary tumors and metastases and identify a new prospective target for cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Hematopoiese Clonal/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Carcinoma Pulmonar de Células não Pequenas/terapia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Proliferação de Células/genética , Quimioterapia Adjuvante/métodos , Quitinases/metabolismo , Colectomia , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Conjuntos de Dados como Assunto , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Granzimas/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Receptor de Morte Celular Programada 1/antagonistas & inibidores , RNA-Seq , Análise de Célula Única , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/metabolismo
8.
Nat Commun ; 12(1): 2340, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879786

RESUMO

Cancer is characterized by pervasive epigenetic alterations with enhancer dysfunction orchestrating the aberrant cancer transcriptional programs and transcriptional dependencies. Here, we epigenetically characterize human colorectal cancer (CRC) using de novo chromatin state discovery on a library of different patient-derived organoids. By exploring this resource, we unveil a tumor-specific deregulated enhancerome that is cancer cell-intrinsic and independent of interpatient heterogeneity. We show that the transcriptional coactivators YAP/TAZ act as key regulators of the conserved CRC gained enhancers. The same YAP/TAZ-bound enhancers display active chromatin profiles across diverse human tumors, highlighting a pan-cancer epigenetic rewiring which at single-cell level distinguishes malignant from normal cell populations. YAP/TAZ inhibition in established tumor organoids causes extensive cell death unveiling their essential role in tumor maintenance. This work indicates a common layer of YAP/TAZ-fueled enhancer reprogramming that is key for the cancer cell state and can be exploited for the development of improved therapeutic avenues.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos , Epigênese Genética , Transativadores/genética , Fatores de Transcrição/genética , Regulação Neoplásica da Expressão Gênica , Código das Histonas , Humanos , Modelos Genéticos , Organoides/metabolismo , RNA-Seq , Análise de Célula Única , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
9.
Front Chem ; 9: 598802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718327

RESUMO

The exposure to pathogens triggers the activation of adaptive immune responses through antigens bound to surface receptors of antigen presenting cells (APCs). T cell receptors (TCR) are responsible for initiating the immune response through their physical direct interaction with antigen-bound receptors on the APCs surface. The study of T cell interactions with antigens is considered of crucial importance for the comprehension of the role of immune responses in cancer growth and for the subsequent design of immunomodulating anticancer drugs. RNA sequencing experiments performed on T cells represented a major breakthrough for this branch of experimental molecular biology. Apart from the gene expression levels, the hypervariable CDR3α/ß sequences of the TCR loops can now be easily determined and modelled in the three dimensions, being the portions of TCR mainly responsible for the interaction with APC receptors. The most direct experimental method for the investigation of antigens would be based on peptide libraries, but their huge combinatorial nature, size, cost, and the difficulty of experimental fine tuning makes this approach complicated time consuming, and costly. We have implemented in silico methodology with the aim of moving from CDR3α/ß sequences to a library of potentially antigenic peptides that can be used in immunologically oriented experiments to study T cells' reactivity. To reduce the size of the library, we have verified the reproducibility of experimental benchmarks using the permutation of only six residues that can be considered representative of all ensembles of 20 natural amino acids. Such a simplified alphabet is able to correctly find the poses and chemical nature of original antigens within a small subset of ligands of potential interest. The newly generated library would have the advantage of leading to potentially antigenic ligands that would contribute to a better understanding of the chemical nature of TCR-antigen interactions. This step is crucial in the design of immunomodulators targeted towards T-cells response as well as in understanding the first principles of an immune response in several diseases, from cancer to autoimmune disorders.

10.
Nucleic Acids Res ; 48(W1): W332-W339, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32313927

RESUMO

Fluorescence in situ hybridization (FISH) is a powerful single-cell technique that harnesses nucleic acid base pairing to detect the abundance and positioning of cellular RNA and DNA molecules in fixed samples. Recent technology development has paved the way to the construction of FISH probes entirely from synthetic oligonucleotides (oligos), allowing the optimization of thermodynamic properties together with the opportunity to design probes against any sequenced genome. However, comparatively little progress has been made in the development of computational tools to facilitate the oligos design, and even less has been done to extend their accessibility. OligoMiner is an open-source and modular pipeline written in Python that introduces a novel method of assessing probe specificity that employs supervised machine learning to predict probe binding specificity from genome-scale sequence alignment information. However, its use is restricted to only those people who are confident with command line interfaces because it lacks a Graphical User Interface (GUI), potentially cutting out many researchers from this technology. Here, we present OligoMinerApp (http://oligominerapp.org), a web-based application that aims to extend the OligoMiner framework through the implementation of a smart and easy-to-use GUI and the introduction of new functionalities specially designed to make effective probe mining available to everyone.


Assuntos
Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos , Software , Genoma , Internet
11.
F1000Res ; 9: 136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308977

RESUMO

We report on the activities of the 2015 edition of the BioHackathon, an annual event that brings together researchers and developers from around the world to develop tools and technologies that promote the reusability of biological data. We discuss issues surrounding the representation, publication, integration, mining and reuse of biological data and metadata across a wide range of biomedical data types of relevance for the life sciences, including chemistry, genotypes and phenotypes, orthology and phylogeny, proteomics, genomics, glycomics, and metabolomics. We describe our progress to address ongoing challenges to the reusability and reproducibility of research results, and identify outstanding issues that continue to impede the progress of bioinformatics research. We share our perspective on the state of the art, continued challenges, and goals for future research and development for the life sciences Semantic Web.


Assuntos
Disciplinas das Ciências Biológicas , Biologia Computacional , Web Semântica , Mineração de Dados , Metadados , Reprodutibilidade dos Testes
12.
Methods Mol Biol ; 1910: 747-766, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31278684

RESUMO

Open-source software encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, open-source software comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor.In this chapter, we compare the three principal approaches for sharing software between different programming languages: by remote procedure call (RPC), by sharing a local "call stack," and by calling program to programs. RPC provides a language-independent protocol over a network interface; examples are SOAP and Rserve. The local call stack provides a between-language mapping, not over the network interface but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java virtual machine stack. This functionality provides strategies for sharing of software between Bio* projects, which can be exploited more often.Here, we present cross-language examples for sequence translation and measure throughput of the different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite (EMBOSS).In general, call stack approaches outperform native Bio* implementations, and these, in turn, outperform "RPC"-based approaches. To test and compare strategies, we provide a downloadable Docker container with all examples, tools, and libraries included.


Assuntos
Biologia Computacional , Linguagens de Programação , Software , Biologia Computacional/métodos , Interface Usuário-Computador , Navegador
13.
Methods Mol Biol ; 1514: 173-185, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27787801

RESUMO

Next-generation sequencing approaches, in particular RNA-seq, provide a genome-wide expression profiling allowing the identification of novel and rare transcripts such as long noncoding RNAs (lncRNA). Many RNA-seq studies have now been performed aimed at the characterization of lncRNAs and their possible involvement in cell development and differentiation in different organisms, cell types, and tissues. The adaptive immune system is an extraordinary context for the study of the role of lncRNAs in differentiation. Indeed lncRNAs seem to be key drivers in governing flexibility and plasticity of both CD8+ and CD4+ T cell, together with lineage-specific transcription factors and cytokines, acting as fine-tuners of fate choices in T cell differentiation.We describe here a pipeline for the identification of lncRNAs starting from RNA-Seq raw data.


Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Longo não Codificante/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Genoma , Humanos , RNA Longo não Codificante/genética
14.
Immunity ; 45(5): 1135-1147, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851914

RESUMO

Tumor-infiltrating regulatory T lymphocytes (Treg) can suppress effector T cells specific for tumor antigens. Deeper molecular definitions of tumor-infiltrating-lymphocytes could thus offer therapeutic opportunities. Transcriptomes of T helper 1 (Th1), Th17, and Treg cells infiltrating colorectal or non-small-cell lung cancers were compared to transcriptomes of the same subsets from normal tissues and validated at the single-cell level. We found that tumor-infiltrating Treg cells were highly suppressive, upregulated several immune-checkpoints, and expressed on the cell surfaces specific signature molecules such as interleukin-1 receptor 2 (IL1R2), programmed death (PD)-1 Ligand1, PD-1 Ligand2, and CCR8 chemokine, which were not previously described on Treg cells. Remarkably, high expression in whole-tumor samples of Treg cell signature genes, such as LAYN, MAGEH1, or CCR8, correlated with poor prognosis. Our findings provide insights into the molecular identity and functions of human tumor-infiltrating Treg cells and define potential targets for tumor immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Separação Celular , Neoplasias Colorretais/mortalidade , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Prognóstico , Transcriptoma
15.
Methods Mol Biol ; 1480: 125-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27659980

RESUMO

RNA-Seq is an approach to transcriptome profiling that uses deep-sequencing technologies to detect and accurately quantify RNA molecules originating from a genome at a given moment in time. In recent years, the advent of RNA-Seq has facilitated genome-wide expression profiling, including the identification of novel and rare transcripts like noncoding RNAs and novel alternative splicing isoforms.Here, we describe the analytical steps required for the identification and characterization of noncoding RNAs starting from RNA-Seq raw samples, with a particular emphasis on long noncoding RNAs (lncRNAs).


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Longo não Codificante/isolamento & purificação , RNA não Traduzido/isolamento & purificação , Processamento Alternativo/genética , Genoma , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Transcriptoma/genética
16.
J Biomed Semantics ; 7: 39, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296299

RESUMO

BACKGROUND: Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. DESCRIPTION: We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned "omics" areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. CONCLUSIONS: Our ontology allows users to uniformly describe - and potentially merge - sequence annotations from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.


Assuntos
Ontologias Biológicas , Anotação de Sequência Molecular/normas , Nucleotídeos/genética , Nucleotídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Semântica , Bases de Dados Genéticas , Bases de Dados de Proteínas , Lógica Fuzzy , Humanos , Obras de Referência
17.
Sci Data ; 2: 150051, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26451251

RESUMO

To help better understand the role of long noncoding RNAs in the human immune system, we recently generated a comprehensive RNA-seq data set using 63 RNA samples from 13 subsets of T (CD4(+) naive, CD4(+) TH1, CD4(+) TH2, CD4(+) TH17, CD4(+) Treg, CD4(+) TCM, CD4(+) TEM, CD8(+) TCM, CD8(+) TEM, CD8(+) naive) and B (B naive, B memory, B CD5(+)) lymphocytes. There were five biological replicates for each subset except for CD8(+) TCM and B CD5(+) populations that included 4 replicates. RNA-Seq data were generated by an Illumina HiScanSQ sequencer using the TruSeq v3 Cluster kit. 2.192 billion of paired-ends reads, 2×100 bp, were sequenced and after filtering a total of about 1.7 billion reads were mapped. Using different de novo transcriptome reconstruction techniques over 500 previously unknown lincRNAs were identified. The current data set could be exploited to drive the functional characterization of lincRNAs, identify novel genes and regulatory networks associated with specific cells subsets of the human immune system.


Assuntos
Subpopulações de Linfócitos B , RNA Longo não Codificante , Subpopulações de Linfócitos T , Transcriptoma , Perfilação da Expressão Gênica , Humanos
18.
Nucleic Acids Res ; 43(W1): W487-92, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25897123

RESUMO

The miRBase is the official miRNA repository which keeps the annotation updated on newly discovered miRNAs: it is also used as a reference for the design of miRNA profiling platforms. Nomenclature ambiguities generated by loosely updated platforms and design errors lead to incompatibilities among platforms, even from the same vendor. Published miRNA lists are thus generated with different profiling platforms that refer to diverse and not updated annotations. This greatly compromises searches, comparisons and analyses that rely on miRNA names only without taking into account the mature sequences, which is particularly critic when such analyses are carried over automatically. In this paper we introduce miRiadne, a web tool to harmonize miRNA nomenclature, which takes into account the original miRBase versions from 10 up to 21, and annotations of 40 common profiling platforms from nine brands that we manually curated. miRiadne uses the miRNA mature sequence to link miRBase versions and/or platforms to prevent nomenclature ambiguities. miRiadne was designed to simplify and support biologists and bioinformaticians in re-annotating their own miRNA lists and/or data sets. As Ariadne helped Theseus in escaping the mythological maze, miRiadne will help the miRNA researcher in escaping the nomenclature maze. miRiadne is freely accessible from the URL http://www.miriadne.org.


Assuntos
MicroRNAs/química , Anotação de Sequência Molecular , Software , Terminologia como Assunto , Internet , MicroRNAs/metabolismo
19.
Nat Immunol ; 16(3): 318-325, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25621826

RESUMO

Long noncoding RNAs are emerging as important regulators of cellular functions, but little is known of their role in the human immune system. Here we investigated long intergenic noncoding RNAs (lincRNAs) in 13 subsets of T lymphocytes and B lymphocytes by next-generation sequencing-based RNA sequencing (RNA-seq analysis) and de novo transcriptome reconstruction. We identified over 500 previously unknown lincRNAs and described lincRNA signatures. Expression of linc-MAF-4, a chromatin-associated lincRNA specific to the TH1 subset of helper T cells, was inversely correlated with expression of MAF, a TH2-associated transcription factor. Downregulation of linc-MAF-4 skewed T cell differentiation toward the TH2 phenotype. We identified a long-distance interaction between the genomic regions of the gene encoding linc-MAF-4 and MAF, where linc-MAF-4 associated with the chromatin modifiers LSD1 and EZH2; this suggested that linc-MAF-4 regulated MAF transcription through the recruitment of chromatin modifiers. Our results demonstrate a key role for lincRNA in T lymphocyte differentiation.


Assuntos
Fatores de Transcrição Maf/genética , RNA Longo não Codificante/genética , Linfócitos T/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Humanos , Fatores de Transcrição Maf/imunologia , RNA Longo não Codificante/imunologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Transcriptoma/genética , Transcriptoma/imunologia
20.
BMC Bioinformatics ; 15 Suppl 14: S7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25472764

RESUMO

BACKGROUND: Computational biology comprises a wide range of technologies and approaches. Multiple technologies can be combined to create more powerful workflows if the individuals contributing the data or providing tools for its interpretation can find mutual understanding and consensus. Much conversation and joint investigation are required in order to identify and implement the best approaches. Traditionally, scientific conferences feature talks presenting novel technologies or insights, followed up by informal discussions during coffee breaks. In multi-institution collaborations, in order to reach agreement on implementation details or to transfer deeper insights in a technology and practical skills, a representative of one group typically visits the other. However, this does not scale well when the number of technologies or research groups is large. Conferences have responded to this issue by introducing Birds-of-a-Feather (BoF) sessions, which offer an opportunity for individuals with common interests to intensify their interaction. However, parallel BoF sessions often make it hard for participants to join multiple BoFs and find common ground between the different technologies, and BoFs are generally too short to allow time for participants to program together. RESULTS: This report summarises our experience with computational biology Codefests, Hackathons and Sprints, which are interactive developer meetings. They are structured to reduce the limitations of traditional scientific meetings described above by strengthening the interaction among peers and letting the participants determine the schedule and topics. These meetings are commonly run as loosely scheduled "unconferences" (self-organized identification of participants and topics for meetings) over at least two days, with early introductory talks to welcome and organize contributors, followed by intensive collaborative coding sessions. We summarise some prominent achievements of those meetings and describe differences in how these are organised, how their audience is addressed, and their outreach to their respective communities. CONCLUSIONS: Hackathons, Codefests and Sprints share a stimulating atmosphere that encourages participants to jointly brainstorm and tackle problems of shared interest in a self-driven proactive environment, as well as providing an opportunity for new participants to get involved in collaborative projects.


Assuntos
Biologia Computacional , Comportamento Cooperativo , Software , Comunicação , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA