Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(12): 7635-7641, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30380877

RESUMO

The mechanical manipulation of magnetic nanoparticles is a powerful approach to probing and actuating biological processes in living systems. Implementing this technique in high-throughput assays can be achieved using biocompatible micromagnet arrays. However, the magnetic properties of these arrays are usually indirectly inferred from simulations or Stokes drag measurements, leaving unresolved questions about the actual profile of the magnetic fields at the micrometer scale and the exact magnetic forces that are applied. Here, we exploit the magnetic field sensitivity of nitrogen-vacancy color centers in diamond to map the 3D stray magnetic field produced by a single soft ferromagnetic microstructure. By combining this wide-field optical magnetometry technique with magneto-optic Kerr effect microscopy, we fully analyze the properties of the micromagnets, including their magnetization saturation and their size-dependent magnetic susceptibility. We further show that the high magnetic field gradients produced by the micromagnets, greater than 104 T·m-1 under an applied magnetic field of about 100 mT, enables the manipulation of magnetic nanoparticles smaller than 10 nm inside living cells. This work paves the way for quantitative and parallelized experiments in magnetogenetics and magnetomechanics in cell biology.


Assuntos
Materiais Biocompatíveis/química , Diamante/química , Magnetometria/métodos , Imãs/química , Fenômenos Biomecânicos , Desenho de Equipamento , Células HeLa , Humanos , Lasers , Campos Magnéticos , Magnetometria/instrumentação , Microscopia/instrumentação , Microscopia/métodos , Nanopartículas/química , Nitrogênio/química , Dispositivos Ópticos , Tamanho da Partícula
2.
Artigo em Inglês | MEDLINE | ID: mdl-25377512

RESUMO

Our ability to quantitatively control the spatiotemporal properties of cellular information processing is key for understanding biological systems at both mechanistic and systemic level. In this context, magnetic field offers a relevant strategy of control over cellular processes that broaden the toolbox currently available in cell biology. Among the increasing number of methods, we will focus on recent advances based on magnetic nanoparticles conjugated to proteins to trigger specific signaling pathways and cellular processes. Extracellular or intracellular manipulations of nanoparticles permit magnetic control of ion channels and membrane receptor activation, protein positioning within cells and cytoskeleton spatial engineering. These approaches provide powerful strategies to examine the organization principles of living cells.


Assuntos
Campos Magnéticos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/efeitos da radiação , Micromanipulação/métodos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Animais , Humanos
3.
ACS Nano ; 7(11): 9647-54, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24144301

RESUMO

Living systems offer attractive strategies to generate nanoscale structures because of their innate functional properties such as the dynamic assembly of ordered nanometer fibers, the generation of mechanical forces, or the directional transport mediated by molecular motors. The design of hybrid systems, capable of interfacing artificial building blocks with biomolecules, may be a key step toward the rational design of nanoscale devices and materials. Here, we have designed a bottom-up approach to organize cytoskeletal elements in space using the self-assembly properties of magnetic nanoparticles conjugated to signaling proteins involved in microtubule nucleation. We show that magnetic nanoparticles conjugated to signaling proteins involved in microtubule nucleation can control the positioning of microtubule assembly. Under a magnetic field, a self-organized pattern of biofunctionalized nanoparticles is formed and leads to the nucleation of a periodical network of microtubules in Xenopus laevis egg extract. Our method shows how bioactive nanoparticles can generate a biochemically active pattern upon magnetic actuation, which triggers the spatial organization of nonequilibrium biological structures.


Assuntos
Magnetismo , Microtúbulos/química , Proteínas/química , Animais , Citoesqueleto/metabolismo , Técnicas Analíticas Microfluídicas , Microscopia de Fluorescência , Microtúbulos/metabolismo , Nanopartículas/química , Nanotecnologia/métodos , Polietilenoglicóis/química , Polímeros/química , Proteínas Recombinantes/química , Transdução de Sinais , Estresse Mecânico , Xenopus laevis/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA