Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(11): 1350-1357, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37255175

RESUMO

ConspectusPlasmonic nanolayers and laminar metallic/dielectric multilayers were originally developed for optical cloaking applications and lensing applications that could potentially image objects whose size was below the diffraction limit. These assemblies were initially formed from gold or silver nanorods grown within an alumina mesh. However, more recently, assemblies with similar properties have also been prepared by sequential thin-layer deposition of alternating layers of gold and magnesium fluoride (MgF2). These metal/dielectric composite materials enable control of the dielectric constant in the directions perpendicular to the layers and balance the real and imaginary dielectric constants of the assembly such that the speed and the amplitude of the waves traveling through the assembly are not attenuated.In this Account, we will also focus on a few of the applications ranging from surface wetting to fluorescence quenching to enhancement of photochemical reactions. First, we will share an introduction to processes used to create these materials, which are combinations of low refractive index metals and transparent higher index materials arranged in a scalable repeating fashion. Two fabrication methods were employed: an electrochemical deposition of Ag nanorods into an anodized alumina matrix which produced materials with an anisotropic negative refractive index material within the plane of the film and lamellar metal/dielectric layers in which the negative index perpendicular to the growth direction. These alternating layers of plasmonic metals and dielectric materials were ultimately chosen to prepare films for further testing, because of their relative ease of fabrication. We will continue with a discussion of a few of the applications of both of these nonlocal dielectric composite materials including more specialized plasmonic, composite, and hyperbolic metamaterials including fluorescence quenching, photochemical reactions, and surface wetting. In each of these applications, the unique response caused by the enhancement of the electric field and the interface between hyperbolic materials and plasmonic materials as they interact photophysically with their near neighbors is presented. In each of the applications, the enhanced electric field extends from the composite substrate layer to interact with its near neighbors and beyond. The presence of this extended interaction can be observed in the form of decreased emission lifetime, enhancement of photochemical reaction rates, and changes in the surface energies measured by contact angle goniometry. In this Account, all of these situations will be addressed. Finally, we will conclude with a summary and vision for the future as well as a discussion of the unique challenges and opportunities available as research active faculty at an HBCU.

2.
Sci Rep ; 11(1): 111, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420242

RESUMO

One of the ways to mitigate the world energy crisis is to harvest clean and green energy from waste-heat, which is abundant, ubiquitous, and free. Energy harvesting of this waste-heat is one of the most encouraging methods to capture freely accessible electrical energy. Ferroelectric materials can be used to harvest energy for low power electronic devices, as they exhibit switchable polarization, excellent piezoelectric and pyroelectric properties. The most important characteristic of ferroelectric materials, in the context of energy harvesting, is their ability to generate electric power from a time-dependent temperature change. In this work, we grew highly c-axis oriented heterostructures of BaZr0.2Ti0.8O3 (barium zirconium titanate, BZT)/Ba0.7Ca0.3TiO3 (barium calcium titanate, BCT) on SrRuO3 (strontium ruthenate, SRO) and deposited on SrTiO3 (strontium titanate, STO) single crystalline substrate using pulsed laser deposition (PLD) technique. We investigated the structural, electrical, dielectric, and pyroelectric properties of the above-mentioned fabricated heterostructures. The wide range of θ-2θ X-ray diffraction (XRD) patterns only shows (00l) reflection peaks of heterostructures and the substrate which confirmed that the films are highly c-axis oriented. We are also capable to convert the low-grade waste-heat into electrical energy by measuring various temperature-dependent ferroelectric hysteresis loops of our nanostructure films via pyroelectric Ericsson cycles and the structures show an energy conversion density ~ 10,970 kJ/m3 per cycle. These devices exhibit a large pyroelectric current density of ~ 25 mA/m2 with 11.8 °C of temperature fluctuation and the corresponding pyroelectric coefficient of 3425 µC/m2K. Our research findings suggest that these lead-free relaxor-ferroelectric heterostructures might be the potential candidates to harvest electrical energy from waste low-grade thermal energy.

3.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120972

RESUMO

We have studied emission kinetics of HITC laser dye on top of glass, smooth Au films, and randomly structured porous Au nanofoams. The observed concentration quenching of luminescence of highly concentrated dye on top of glass (energy transfer to acceptors) and the inhibition of the concentration quenching in vicinity of smooth Au films were in accord with our recent findings. Intriguingly, the emission kinetics recorded in different local spots of the Au nanofoam samples had a spread of the decay rates, which was large at low dye concentrations and became narrower with increase of the dye concentration. We infer that in different subvolumes of Au nanofoams, HITC molecules are coupled to the nanofoams weaker or stronger. The inhibition of the concentration quenching in Au nanofoams was stronger than on top of smooth Au films. This was true for all weakly and strongly coupled subvolumes contributing to the spread of the emission kinetics. The experimental observations were explained using theoretical model accounting for change in the Förster radius caused by the strong energy transfer to metal.

4.
Sci Rep ; 10(1): 9346, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494056

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 10(1): 4743, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179756

RESUMO

Combining two materials in a nanoscale level can create a composite with new functionalities and improvements in their physical and chemical properties. Here we present a high-throughput approach to produce a nanocomposite consisting of metal nanoparticles and semiconductor oxide nanostructures. Volmer-Weber growth, though unfavorable for thin films, promotes nucleation of dense and isolated metal nanoparticles on crystalline oxide nanostructures, resulting in new material properties. We demonstrate such a growth of Au nanoparticles on SnO2 nanostructures and a remarkable sensitivity of the nanocomposite for detecting traces of analytes in surface enhanced Raman spectroscopy. Au nanoparticles with tunable size enable us to modify surface wettability and convert hydrophilic oxide surfaces into super-hydrophobic with contact angles over 150°. We also find that charge injection through electron beam exposure shows the same effect as photo-induced charge separation, providing an extra Raman enhancement up to an order of magnitude.

6.
Sci Rep ; 6: 27834, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27324650

RESUMO

It has been recently shown that scores of physical and chemical phenomena (including spontaneous emission, scattering and Förster energy transfer) can be controlled by nonlocal dielectric environments provided by metamaterials with hyperbolic dispersion and simpler metal/dielectric structures. At this time, we have researched van der Waals interactions and experimentally studied wetting of several metallic, dielectric and composite multilayered substrates. We have found that the wetting angle of water on top of MgF2 is highly sensitive to the thickness of the MgF2 layer and the nature of the underlying substrate that could be positioned as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency. The latter effect cannot be described in terms of the most basic model of dispersion van der Waals-London forces based on pair-wise summation of dipole-dipole interactions across an interface or a gap separating the two media. We infer that the experimentally observed gradual change of the wetting angle with increase of the thickness of the MgF2 layer can possibly be explained by the distance dependence of the Hamaker function (describing the strength of interaction), which originates from retardation of electromagnetic waves at the distances comparable to a wavelength.

7.
Opt Lett ; 40(8): 1659-62, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25872041

RESUMO

We demonstrate the enhancement of magnetic dipole spontaneous emission from Eu3+ ions by an engineered plasmonic nanostructure that controls the electromagnetic environment of the emitter. Using an optical microscope setup, an enhancement in the intensity of the Eu3+ magnetic dipole emission was observed for emitters located in close vicinity to a gold nanohole array designed to support plasmonic resonances overlapping with the emission spectrum of the ions.

8.
J Chem Phys ; 136(11): 114703, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22443786

RESUMO

Equilibrium atomic configurations and electron energy structure of ethanol adsorbed on the Si (111) surface are studied by the first principles density functional theory. Geometry optimization is performed by the total energy minimization method. Equilibrium atomic geometries of ethanol, both undissociated and dissociated, on the Si (111) surface are found and analysed. Reaction pathways and predicted transition states are discussed in comparison with available experimental data in terms of the feasibility of the reactions occurring. Analysis of atom and orbital resolved projected density of states indicates substantial modifications of the Si surface valence and conduction electron bands due to the adsorption of ethanol affecting the electronic properties of the surface.


Assuntos
Etanol/química , Teoria Quântica , Silício/química , Adsorção , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA