Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Contam Hydrol ; 264: 104363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805790

RESUMO

A series of laboratory experiments are conducted to simulate the acidification and subsequent recovery of a sand aquifer exploited by in situ recovery (ISR) mining. A sulfuric acid solution (pH 2) is first injected into a column packed with sand from the Zoovch Ovoo uranium roll front deposit (Mongolia). Solutions representative of local groundwater or enriched in cations (Na+, Mg2+) are then circulated through the column to simulate the inflow of aquifer water. pH and major ion concentrations (Na+, Cl-, SO42-, Ca2+, Mg2+, K+) measured at the column outlet reproduce the overall evolution of porewater chemistry observed in the field. The presence of minor quantities of swelling clay minerals (≈6 wt% smectite) is shown to exert an important influence on the behavior of inorganic cations, particularly H+, via ion-exchange reactions. Numerical models that consider ion-exchange on smectite as the sole solid-solution interaction are able to reproduce variations in pH and cation concentrations in the column experiments. This highlights the importance of clay minerals in controlling H+ mobility and demonstrates that sand from the studied aquifer can be described to a first order as an ion-exchanger. The present study confirms the key role of clay minerals in controlling water chemistry in acidic environments through ion-exchange processes. In a context of managing the long-term environmental footprint of industrial and mining activities (ISR, acid mine drainage…), this work will bring insights for modeling choices and identification of key parameters to help operators to define their production and/or remediation strategies.


Assuntos
Silicatos de Alumínio , Cátions , Argila , Água Subterrânea , Mineração , Areia , Argila/química , Concentração de Íons de Hidrogênio , Cátions/química , Água Subterrânea/química , Silicatos de Alumínio/química , Areia/química , Modelos Químicos , Modelos Teóricos , Ácidos Sulfúricos/química
2.
Environ Sci Pollut Res Int ; 25(3): 2350-2360, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29124637

RESUMO

Mercury (Hg) is a toxic contaminant present in most aquatic ecosystems. High concentrations pose serious threats to organisms and to human health. Because previous studies focused on few countries, environmental hazard due to Hg contamination remains obscure in many geographic areas, and for example limited information is available in North Africa. We examined total Hg contamination in 13 sites in Morocco (12 rivers and one lake) spread over a large area, 400 km north-south and 350 km west-east, that encompasses different biogeographic zones separated by the Atlas Mountains. Due to their longevity and sedentary habits, we used freshwater turtles as biological probes to monitor Hg exposure. Keratinized tissues reflect long-term Hg exposure; thus, we assayed Hg concentration in the claws of > 200 individuals and supplemented these data with blood Hg concentrations of > 60 individuals (a tissue that provides shorter term Hg exposure integration). The results provide the first large-scale picture of Hg contamination in the aquatic freshwater systems of Morocco. Comparisons with previous studies revealed that some of the sites were highly contaminated (e.g. mean Hg concentrations were above 5 µg g-1, a very high level in keratinized tissues) whereas other sites presented moderate or baseline levels. Unexpectedly, all highly contaminated sites were found in less densely populated areas, while more densely urbanized northern sites, even the sewers of large cities, were not highly contaminated. We hypothesize that silver mining activities in the southern High Atlas and in the Anti-Atlas contaminate rivers of the catchment basins over long distances. These findings indicate that fish, water consumption and contamination levels in local people should be further scrutinized.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Mercúrio/análise , Tartarugas/sangue , Poluentes Químicos da Água/análise , Animais , Ecossistema , Humanos , Mercúrio/sangue , Mineração , Marrocos , Poluentes Químicos da Água/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA