RESUMO
A sensing mechanism in mammals perceives xenobiotics and induces the transcription of genes encoding proteins that detoxify these molecules. However, it is unclear if plants sense xenobiotics, and activate an analogous signalling system leading to their detoxification. Using the liverwort Marchantia polymorpha, we tested the hypothesis that there is a sensing system in plants that perceives herbicides resulting in the increased transcription of genes encoding proteins that detoxify these herbicides. Consistent with the hypothesis, we show that chlorsulfuron-treatment induces changes in the M. polymorpha transcriptome. However, these transcriptome changes do not occur in chlorsulfuron (CS)-treated target site resistant mutants, where the gene encoding the target carries a mutation that confers resistance to chlorsulfuron. Instead, we show that inactivation of the chlorsulfuron target, acetolactate synthase (ALS) (also known as acetohydroxyacid synthase (AHAS)), is required for the transcriptome response. These data demonstrate that the transcriptome changes in chlorsulfuron-treated plants are caused by disrupted amino acid synthesis and metabolism resulting from acetolactate synthase inhibition, and indicate that the transcriptome changes are not caused by a herbicide sensing mechanism.
Assuntos
Acetolactato Sintase , Herbicidas , Marchantia , Herbicidas/toxicidade , Acetolactato Sintase/metabolismo , Marchantia/genética , Marchantia/metabolismo , Transcriptoma , Resistência a Herbicidas/genéticaRESUMO
Herbicide resistance in weeds is a growing threat to global crop production. Non-target site resistance is problematic because a single resistance allele can confer tolerance to many herbicides (cross resistance), and it is often a polygenic trait so it can be difficult to identify the molecular mechanisms involved. Most characterized molecular mechanisms of non-target site resistance are caused by gain-of-function mutations in genes from a few key gene families-the mechanisms of resistance caused by loss-of-function mutations remain unclear. In this study, we first show that the mechanism of non-target site resistance to the herbicide thaxtomin A conferred by loss-of-function of the gene PAM16 is conserved in Marchantia polymorpha, validating its use as a model species with which to study non-target site resistance. To identify mechanisms of non-target site resistance caused by loss-of-function mutations, we generated 107 UV-B mutagenized M. polymorpha spores and screened for resistance to the herbicide thaxtomin A. We isolated 13 thaxtomin A-resistant mutants and found that 3 mutants carried candidate resistance-conferring SNPs in the MpRTN4IP1L gene. Mprtn4ip1l mutants are defective in coenzyme Q biosynthesis and accumulate higher levels of reactive oxygen species (ROS) than wild-type plants. Mutants are weakly resistant to thaxtomin A and cross resistant to isoxaben, suggesting that loss of MpRTN4IP1L function confers non-target site resistance. Mutants are also defective in thaxtomin A metabolism. We conclude that loss of MpRTN4IP1L function is a novel mechanism of non-target site herbicide resistance and propose that other mutations that increase ROS levels or decrease thaxtomin A metabolism could contribute to thaxtomin A resistance in the field.
Assuntos
Herbicidas , Herbicidas/farmacologia , Ubiquinona , Espécies Reativas de Oxigênio , Plantas Daninhas/genéticaRESUMO
Small peptides that are proteolytic cleavage products (PCPs) of less than 100 amino acids are emerging as key signaling molecules that mediate cell-to-cell communication and biological processes that occur between and within plants, fungi, and bacteria. Yet, the discovery and characterization of these molecules is largely overlooked. Today, selective enrichment and subsequent characterization by mass spectrometry-based sequencing offers the greatest potential for their comprehensive characterization, however qualitative and quantitative performance metrics are rarely captured. Herein, we addressed this need by benchmarking the performance of an enrichment strategy, optimized specifically for small PCPs, using state-of-the-art de novo-assisted peptide sequencing. As a case study, we implemented this approach to identify PCPs from different root and foliar tissues of the hybrid poplar Populus × canescens 717-1B4 in interaction with the ectomycorrhizal basidiomycete Laccaria bicolor. In total, we identified 1,660 and 2,870 Populus and L. bicolor unique PCPs, respectively. Qualitative results supported the identification of well-known PCPs, like the mature form of the photosystem II complex 5-kDa protein (approximately 3 kDa). A total of 157 PCPs were determined to be significantly more abundant in root tips with established ectomycorrhiza when compared with root tips without established ectomycorrhiza and extramatrical mycelium of L. bicolor. These PCPs mapped to 64 Populus proteins and 69 L. bicolor proteins in our database, with several of them previously implicated in biologically relevant associations between plant and fungus.
Assuntos
Laccaria/fisiologia , Peptídeos/química , Populus/química , Populus/microbiologia , Proteólise , Regulação da Expressão Gênica de Plantas , Interações entre Hospedeiro e Microrganismos , Micorrizas/fisiologia , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Análise de Sequência de ProteínaRESUMO
ROOT HAIR DEFECTIVE SIX-LIKE (RSL) genes control the development of structures from single cells at the surface of embryophytes (land plants) such as rhizoids and root hairs. RSL proteins constitute a subclass (VIIIc) of the basic helix-loop-helix (bHLH) class VIII transcription factor family. The Charophyceae form the only class of streptophyte algae with tissue-like structures and rhizoids. To determine if the function of RSL genes in the control of cell differentiation in embryophytes was inherited from a streptophyte algal ancestor, we identified the single class VIII bHLH gene from the charophyceaen alga Chara braunii (CbbHLHVIII). CbbHLHVIII is sister to the RSL proteins; they constitute a monophyletic group. Expression of CbbHLHVIII does not compensate for loss of RSL functions in Marchantia polymorpha or Arabidopsis thaliana. In C. braunii CbbHLHVIII is expressed at sites of morphogenesis but not in rhizoids. This finding indicates that C. braunii class VIII protein is functionally different from land plant RSL proteins. This result suggests that the function of RSL proteins in cell differentiation at the plant surface evolved by neofunctionalisation in the land plants lineage after its divergence from its last common ancestor with C. braunii, at or before the colonisation of the land by embryophytes.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embriófitas/metabolismo , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutação/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genéticaRESUMO
Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.
Assuntos
Chara/genética , Genoma de Planta , Evolução Biológica , Parede Celular/metabolismo , Chara/crescimento & desenvolvimento , Embriófitas/genética , Redes Reguladoras de Genes , Pentosiltransferases/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , TranscriptomaRESUMO
In spite of its importance for agriculture and 30 years of genetic studies, the phosphate-starvation signaling pathway, that allows plants to detect, respond, and adapt to changes in the phosphate concentration of the rhizosphere, remains poorly known. Chemical genetics has been increasingly and successfully used as a complementary approach to genetics for the dissection of signaling pathways in diverse organisms. Screens can be designed to identify chemicals interfering specifically with a pathway of interest. We designed a screen that led to the discovery of the first chemical capable to induce specifically the phosphate-starvation signaling pathway in Arabidopsis thaliana. This procedure, described here, can be adapted for the discovery of inducers or repressors of other pathways.
Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Descoberta de Drogas , Fenômenos Fisiológicos da Nutrição , Fosfatos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Descoberta de Drogas/métodos , Estabilidade de Medicamentos , Testes Genéticos/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Estrutura Molecular , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas , Relação Estrutura-AtividadeRESUMO
Two inorganic phosphate (Pi) uptake mechanisms operate in streptophytes and chlorophytes, the two lineages of green plants. PHOSPHATE TRANSPORTER B (PTB) proteins are hypothesized to be the Na+ /Pi symporters catalysing Pi uptake in chlorophytes, whereas PHOSPHATE TRANSPORTER 1 (PHT1) proteins are the H+ /Pi symporters that carry out Pi uptake in angiosperms. PHT1 proteins are present in all streptophyte lineages. However, Pi uptake in streptophyte algae and marine angiosperms requires Na+ influx, suggesting that Na+ /Pi symporters also function in some streptophytes. We tested the hypothesis that Na+ /Pi symporters exist in streptophytes. We identified PTB sequences in streptophyte genomes. Core PTB proteins are present at the plasma membrane of the liverwort Marchantia polymorpha. The expression of M. polymorpha core PTB proteins in the Saccharomyces cerevisiae pho2 mutant defective in high-affinity Pi transport rescues growth in low-Pi environments. Moreover, levels of core PTB mRNAs of M. polymorpha and the streptophyte alga Coleochaete nitellarum are higher in low-Pi than in Pi-replete conditions, consistent with a role in Pi uptake from the environment. We conclude that land plants inherited two Pi uptake mechanisms - mediated by the PTB and PHT1 proteins, respectively - from their streptophyte algal ancestor. Both systems operate in parallel in extant early diverging land plants.
Assuntos
Clorófitas/metabolismo , Embriófitas/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Motivos de Aminoácidos , Sequência de Aminoácidos , Clorófitas/efeitos dos fármacos , Clorófitas/genética , Sequência Conservada , Embriófitas/efeitos dos fármacos , Teste de Complementação Genética , Interações Hidrofóbicas e Hidrofílicas , Marchantia/efeitos dos fármacos , Marchantia/metabolismo , Mutação/genética , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Fosfatos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismoRESUMO
Plants display numerous strategies to cope with phosphate (Pi)-deficiency. Despite multiple genetic studies, the molecular mechanisms of low-Pi-signalling remain unknown. To validate the interest of chemical genetics to investigate this pathway we discovered and analysed the effects of PHOSTIN (PSN), a drug mimicking Pi-starvation in Arabidopsis. We assessed the effects of PSN and structural analogues on the induction of Pi-deficiency responses in mutants and wild-type and followed their accumulation in plants organs by high pressure liquid chromotography (HPLC) or mass-spectrophotometry. We show that PSN is cleaved in the growth medium, releasing its active motif (PSN11), which accumulates in plants roots. Despite the overaccumulation of Pi in the roots of treated plants, PSN11 elicits both local and systemic Pi-starvation effects. Nevertheless, albeit that the transcriptional activation of low-Pi genes by PSN11 is lost in the phr1;phl1 double mutant, neither PHO1 nor PHO2 are required for PSN11 effects. The range of local and systemic responses to Pi-starvation elicited, and their dependence on the PHR1/PHL1 function suggests that PSN11 affects an important and early step of Pi-starvation signalling. Its independence from PHO1 and PHO2 suggest the existence of unknown pathway(s), showing the usefulness of PSN and chemical genetics to bring new elements to this field.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Isoxazóis/isolamento & purificação , Fosfatos/deficiência , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Homeostase , Isoxazóis/síntese química , Fosfatos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Transdução de Sinais , Bibliotecas de Moléculas Pequenas , Fatores de Transcrição , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismoRESUMO
Two essential functions are associated with the root tip: first of all, it ensures a sustained growth of the root system thanks to its role in protecting the stem cell zone responsible for cell division and differentiation. In addition, it is capable of detecting environmental changes at the root cap level, and this property provides a crucial advantage considering that this tissue is located at the forefront of soil exploration. Using results obtained mainly with the plant model Arabidopsis, we summarize the description of the structure of root cap and the known molecular mechanisms regulating its functioning. We briefly review the various responses of the root cap related to the interaction between the plant and its environment, such as phototropism, gravitropism, hydrotropism, mineral composition of the soil and protection against pathogens.