Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Physiol ; 8: 796, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085303

RESUMO

Mitochondrial dysfunction plays a pivotal role in the progression of Alzheimer's disease (AD), and yet the mechanisms underlying the impairment of mitochondrial function in AD remain elusive. Recent evidence suggested a role for Presenilins (PS1 or PS2) in mitochondrial function. Mutations of PSs, the catalytic subunits of the γ-secretase complex, are responsible for the majority of inherited AD cases (FAD). PSs were shown to be present in mitochondria and particularly enriched in mitochondria-associated membranes (MAM), where PS2 is involved in the calcium shuttling between mitochondria and the endoplasmic reticulum (ER). We investigated the precise contribution of PS1 and PS2 to the bioenergetics of the cell and to mitochondrial morphology in cell lines derived from wild type (PS+/+), PS1/2 double knock-out (PSdKO), PS2KO and PS1KO embryos. Our results showed a significant impairment in the respiratory capacity of PSdKO and PS2KO cells with reduction of basal oxygen consumption, oxygen utilization dedicated to ATP production and spare respiratory capacity. In line with these functional defects, we found a decrease in the expression of subunits responsible for mitochondrial oxidative phosphorylation (OXPHOS) associated with an altered morphology of the mitochondrial cristae. This OXPHOS disruption was accompanied by a reduction of the NAD+/NADH ratio. Still, neither ADP/ATP ratio nor mitochondrial membrane potential (ΔΨ) were affected, suggesting the existence of a compensatory mechanism for energetic balance. We observed indeed an increase in glycolytic flux in PSdKO and PS2KO cells. All these effects were truly dependent on PS2 since its stable re-expression in a PS2KO background led to a complete restoration of the parameters impaired in the absence of PS2. Our data clearly demonstrate here the crucial role of PS2 in mitochondrial function and cellular bioenergetics, pointing toward its peculiar role in the formation and integrity of the electron transport chain.

2.
Oncotarget ; 8(34): 56906-56920, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915641

RESUMO

ATM, primarily activated by DNA double-strand breaks, and ATR, activated by single-stranded DNA, are master regulators of the cellular response to DNA damage. In primary chronic lymphocytic leukemia (CLL) cells, ATR signaling is considered to be switched off due to ATR downregulation. Here, we hypothesized that ATR, though expressed at low protein level, could play a role in primary resting CLL cells after genotoxic stress. By investigating the response of CLL cells to UV-C irradiation, a prototypical activator of ATR, we could detect phosphorylation of ATR at Thr-1989, a marker for ATR activation, and also observed that selective ATR inhibitors markedly decreased UV-C-induced phosphorylation of ATR targets, including H2AX and p53. Similar results were obtained with the purine analogs fludarabine and cladribine that were also shown to activate ATR and induce ATR-dependent phosphorylation of H2AX and p53. In addition, ATR inhibition was found to sensitize primary CLL cells to UV-C by decreasing DNA repair synthesis. Conversely, ATR inhibition rescued CLL cells against purine analogs by reducing expression of the pro-apoptotic genes PUMA and BAX. Collectively, our study indicates that ATR signaling can be activated in resting CLL cells and play a pro-survival or pro-apoptotic role, depending on the genotoxic context.

3.
J Cachexia Sarcopenia Muscle ; 8(4): 583-597, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28251839

RESUMO

BACKGROUND: The control of muscle size is an essential feature of health. Indeed, skeletal muscle atrophy leads to reduced strength, poor quality of life, and metabolic disturbances. Consequently, strategies aiming to attenuate muscle wasting and to promote muscle growth during various (pathological) physiological states like sarcopenia, immobilization, malnutrition, or cachexia are needed to address this extensive health issue. In this study, we tested the effects of urolithin B, an ellagitannin-derived metabolite, on skeletal muscle growth. METHODS: C2C12 myotubes were treated with 15 µM of urolithin B for 24 h. For in vivo experiments, mice were implanted with mini-osmotic pumps delivering continuously 10 µg/day of urolithin B during 28 days. Muscle atrophy was studied in mice with a sciatic nerve denervation receiving urolithin B by the same way. RESULTS: Our experiments reveal that urolithin B enhances the growth and differentiation of C2C12 myotubes by increasing protein synthesis and repressing the ubiquitin-proteasome pathway. Genetic and pharmacological arguments support an implication of the androgen receptor. Signalling analyses suggest a crosstalk between the androgen receptor and the mTORC1 pathway, possibly via AMPK. In vivo experiments confirm that urolithin B induces muscle hypertrophy in mice and reduces muscle atrophy after the sciatic nerve section. CONCLUSIONS: This study highlights the potential usefulness of urolithin B for the treatment of muscle mass loss associated with various (pathological) physiological states.


Assuntos
Cumarínicos/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo
4.
Toxicol Appl Pharmacol ; 309: 24-36, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27568863

RESUMO

Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2α, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2α. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines.


Assuntos
Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Gentamicinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Frações Subcelulares/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/fisiologia , Gentamicinas/efeitos adversos , Células LLC-PK1 , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Frações Subcelulares/metabolismo , Suínos , Proteína Supressora de Tumor p53/genética
5.
Oncotarget ; 7(25): 38367-38379, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27223263

RESUMO

Purine analogs are among the most effective chemotherapeutic drugs for the treatment of chronic lymphocytic leukemia (CLL). However, chemoresistance and toxicity limit their clinical use. Here, we report that the DNA polymerase inhibitor aphidicolin, which displayed negligible cytotoxicity as a single agent in primary CLL cells, markedly synergizes with fludarabine and cladribine via enhanced apoptosis. Importantly, synergy was recorded regardless of CLL prognostic markers. At the molecular level, aphidicolin enhanced purine analog-induced phosphorylation of p53 and accumulation of γH2AX, consistent with increase in DNA damage. In addition, aphidicolin delayed γH2AX disappearance that arises after removal of purine analogs, suggesting that aphidicolin causes an increase in DNA damage by impeding DNA damage repair. Similarly, aphidicolin inhibited UV-induced DNA repair known to occur primarily through the nucleotide excision repair (NER) pathway. Finally, we showed that fludarabine induced nuclear import of XPA, an indispensable factor for NER, and that XPA silencing sensitized cell lines to undergo apoptosis in response to fludarabine. Together, our data indicate that aphidicolin potentiates the cytotoxicity of purine analogs by inhibiting a DNA repair pathway that involves DNA polymerases, most likely NER, and provide a rationale for manipulating it to therapeutic advantage.


Assuntos
Afidicolina/farmacologia , Cladribina/farmacologia , Reparo do DNA , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Vidarabina/análogos & derivados , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Humanos , Vidarabina/farmacologia
6.
Eur J Cardiothorac Surg ; 49(5): 1348-53, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26604296

RESUMO

OBJECTIVES: Cardiac transplantation using hearts from donors after circulatory death (DCD) is critically limited by the unavoidable warm ischaemia and its related unpredictable graft function. Inasmuch as hypothermic machine perfusion (MP) has been shown to improve heart preservation, we hypothesized that MP could enable the use of DCD hearts for transplantation. METHODS: We recovered 16 pig hearts following anoxia-induced cardiac arrest and cardioplegia. Grafts were randomly assigned to two different groups of 4-h preservation using either static cold storage (CS) or MP (Modified LifePort© System, Organ Recovery Systems©, Itasca, Il). After preservation, the grafts were reperfused ex vivo using the Langendorff method for 60 min. Energetic charge was quantified at baseline, post-preservation and post-reperfusion by measuring lactate and high-energy phosphate levels. Left ventricular contractility parameters were assessed both in vivo prior to ischaemia and ex vivo during reperfusion. RESULTS: Following preservation, the hearts that were preserved using CS exhibited higher lactate levels (57.1 ± 23.7 vs 21.4 ± 12.2 µmol/g; P < 0.001), increased adenosine monophosphate/adenosine triphosphate ratio (0.53 ± 0.25 vs 0.11 ± 0.11; P < 0.001) and lower phosphocreatine/creatine ratio (9.7 ± 5.3 vs 25.2 ± 11; P < 0.001) in comparison with the MP hearts. Coronary flow was similar in both groups during reperfusion (107 ± 9 vs 125 ± 9 ml/100 g/min heart; P = ns). Contractility decreased in the CS group, yet remained well preserved in the MP group. CONCLUSION: MP preservation of DCD hearts results in improved preservation of the energy and improved functional recovery of heart grafts compared with CS.


Assuntos
Transplante de Coração , Coração/fisiologia , Hipotermia Induzida , Reperfusão Miocárdica , Preservação de Tecido/métodos , Preservação de Tecido/estatística & dados numéricos , Transplantes/fisiologia , Animais , Hipotermia Induzida/métodos , Hipotermia Induzida/estatística & dados numéricos , Modelos Cardiovasculares , Reperfusão Miocárdica/métodos , Reperfusão Miocárdica/estatística & dados numéricos , Choque , Suínos , Doadores de Tecidos
7.
Biochem Pharmacol ; 100: 40-50, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26620371

RESUMO

Deoxycytidine kinase (dCK) (EC 2.7.1.74) is a key enzyme for salvage of deoxynucleosides and activation of numerous anticancer and antiviral nucleoside analogs. dCK activity is enhanced in response to several genotoxic treatments, which has been correlated with an increase of dCK phosphorylation at Ser-74. ATM was recently identified as the kinase responsible for Ser-74 phosphorylation and dCK activation after ionizing radiation (IR). Here, we investigated the role of ATM and the related kinase ATR in dCK activation induced by other types of DNA damage. Using ATM-deficient cells or the ATM inhibitor KU-60019, we found that ATM was not required for dCK activation caused by UV light, aphidicolin, cladribine, and unexpectedly also IR. On the other hand, the selective ATR inhibitor VE-821 significantly reduced up-regulation of dCK activity induced by these genotoxic agents, though not IR, and also down-regulated basal dCK activity. A role for ATR in the control of dCK activity was confirmed by using ATR siRNA and ATR-Seckel cells. ATR was also found to directly phosphorylate dCK at Ser-74 in vitro. Further studies revealed that ATR, which is also activated in response to IR, although later than ATM, was responsible for IR-induced dCK activation in ATM-deficient cells or in the presence of KU-60019. Overall, our results demonstrate that ATR controls basal dCK activity and dCK activation in response to replication stress and indicate that ATR can activate dCK after IR if ATM is lacking or inhibited.


Assuntos
Desoxicitidina Quinase/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Linhagem Celular Transformada , Ativação Enzimática/fisiologia , Células HL-60 , Humanos , Células MCF-7
8.
Transpl Int ; 28(2): 224-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25265884

RESUMO

The number of heart transplants is decreasing due to organ shortage, yet the donor pool could be enlarged by improving graft preservation. Hypothermic machine perfusion (MP) has been shown to improve kidney, liver, or lung graft preservation. Sixteen pig hearts were recovered following cardioplegia and randomized to two different groups of 4-hour preservation using either static cold storage (CS) or MP (Modified LifePort© System, Organ Recovery Systems, Itasca, Il). The grafts then underwent reperfusion on a Langendorff for 60 min. Energetic metabolism was quantified at baseline, postpreservation, and postreperfusion by measuring lactate and high-energy phosphates. The contractility index (CI) was assessed both in vivo prior to cardioplegia and during reperfusion. Following reperfusion, the hearts preserved using CS exhibited higher lactate levels (56.63 ± 23.57 vs. 11.25 ± 3.92 µmol/g; P < 0.001), increased adenosine monophosphate/adenosine triphosphate (AMP/ATP) ratio (0.4 ± 0.23 vs. 0.04 ± 0.04; P < 0.001), and lower phosphocreatine/creatine (PCr/Cr) ratio (33.5 ± 12.6 vs. 55.3 ± 5.8; P <0.001). Coronary flow was similar in both groups during reperfusion (107 ± 9 vs. 125 + /-9 ml/100 g/min heart; P = ns). CI decreased in the CS group, yet being well-preserved in the MP group. Compared with CS, MP resulted in improved preservation of the energy state and more successful functional recovery of heart graft.


Assuntos
Transplante de Coração , Miocárdio/metabolismo , Preservação de Órgãos/instrumentação , Perfusão/instrumentação , Animais , Temperatura Baixa , Circulação Coronária , Metabolismo Energético , Suínos , Função Ventricular Esquerda
9.
Am J Physiol Heart Circ Physiol ; 306(12): H1619-30, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24748590

RESUMO

AMP-activated protein kinase (AMPK), a key cellular sensor of energy, regulates metabolic homeostasis and plays a protective role in the ischemic or diabetic heart. Stimulation of cardiac glucose uptake contributes to this AMPK-mediated protection. The small-molecule AMPK activator A-769662, which binds and directly activates AMPK, has recently been characterized. A-769662-dependent AMPK activation protects the heart against an ischemia-reperfusion episode but is unable to stimulate skeletal muscle glucose uptake. Here, we tried to reconcile these conflicting findings by investigating the impact of A-769662 on cardiac AMPK signaling and glucose uptake. We showed that A-769662 promoted AMPK activation, resulting in the phosphorylation of several downstream targets, but was incapable of stimulating glucose uptake in cultured cardiomyocytes and the perfused heart. The lack of glucose uptake stimulation can be explained by A-769662's narrow specificity, since it selectively activates cardiac AMPK heterotrimeric complexes containing α2/ß1-subunits, the others being presumably required for this metabolic outcome. However, when combined with classical AMPK activators, such as metformin, phenformin, oligomycin, or hypoxia, which impact AMPK heterotrimers more broadly via elevation of cellular AMP levels, A-769662 induced more profound AMPK phosphorylation and subsequent glucose uptake stimulation. The synergistic effect of A-769662 under such ischemia-mimetic conditions protected cardiomyocytes against ROS production and cell death. In conclusion, despite the fact that A-769662 activates AMPK, it alone does not significantly stimulate glucose uptake. However, strikingly, its ability of potentiating the action on other AMPK activators makes it a potentially useful participant in the protective role of AMPK in the heart.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Pironas/farmacologia , Tiofenos/farmacologia , Monofosfato de Adenosina/metabolismo , Animais , Compostos de Bifenilo , Células Cultivadas , Insulina/farmacologia , Masculino , Modelos Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Fenformin/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
10.
FEBS Lett ; 588(5): 727-32, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24462681

RESUMO

Deoxycytidine kinase (dCK) is a critical enzyme for activation of anticancer nucleoside analogs. Its activity is controlled via Ser-74 phosphorylation. Here, we investigated which Ser/Thr phosphatase dephosphorylates Ser-74. In cells, the PP1/PP2A inhibitor okadaic acid increased both dCK activity and Ser-74 phosphorylation at concentrations reported to specifically target PP2A. In line with this, purified PP2A, but not PP1, dephosphorylated recombinant pSer-74-dCK. In cell lysates, the Ser-74-dCK phosphatase activity was found to be latent, Mn(2+)-activated, responsive to PP2A inhibitors, and diminished after PP2A-immunodepletion. Use of siRNAs allowed concluding definitively that PP2A constitutively dephosphorylates dCK in cells and negatively regulates its activity.


Assuntos
Desoxicitidina Quinase/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosforilação , Proteína Fosfatase 2C , Serina/metabolismo
11.
Nucleic Acids Res ; 40(19): 9621-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22850745

RESUMO

Deoxycytidine kinase (dCK) is a rate limiting enzyme critical for phosphorylation of endogenous deoxynucleosides for DNA synthesis and exogenous nucleoside analogues for anticancer and antiviral drug actions. dCK is activated in response to DNA damage; however, how it functions in the DNA damage response is largely unknown. Here, we report that dCK is required for the G2/M checkpoint in response to DNA damage induced by ionizing radiation (IR). We demonstrate that the ataxia-telangiectasia-mutated (ATM) kinase phosphorylates dCK on Serine 74 to activate it in response to DNA damage. We further demonstrate that Serine 74 phosphorylation is required for initiation of the G2/M checkpoint. Using mass spectrometry, we identified a protein complex associated with dCK in response to DNA damage. We demonstrate that dCK interacts with cyclin-dependent kinase 1 (Cdk1) after IR and that the interaction inhibits Cdk1 activity both in vitro and in vivo. Together, our results highlight the novel function of dCK and provide molecular insights into the G2/M checkpoint regulation in response to DNA damage.


Assuntos
Proteína Quinase CDC2/metabolismo , Dano ao DNA , Desoxicitidina Quinase/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desoxicitidina Quinase/química , Desoxicitidina Quinase/fisiologia , Células HeLa , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Serina/metabolismo , Proteínas Supressoras de Tumor/metabolismo
12.
Biochem Pharmacol ; 84(1): 43-51, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22490700

RESUMO

Deoxycytidine kinase (dCK) (EC 2.7.1.74) is a key enzyme in the activation of several therapeutic nucleoside analogs (NA). Its activity can be increased in vivo by Ser-74 phosphorylation, a property that could be used for enhancing NA activation and clinical efficacy. In line with this, studies with recombinant dCK showed that mimicking Ser-74 phosphorylation by a S74E mutation increases its activity toward pyrimidine analogs. However, purine analogs had not been investigated. Here, we show that the S74E mutation increased the k(cat) for cladribine (CdA) by 8- or 3-fold, depending on whether the phosphoryl donor was ATP or UTP, for clofarabine (CAFdA) by about 2-fold with both ATP and UTP, and for fludarabine (F-Ara-A) by 2-fold, but only with UTP. However, the catalytic efficiencies (k(cat)/Km) were not, or slightly, increased. The S74E mutation also sensitized dCK to feed-back inhibition by dCTP, regardless of the phosphoryl donor. Importantly, we did not observe an increase of endogenous dCK activity toward purine analogs after in vivo-induced increase of Ser-74 phosphorylation. Accordingly, treatment of CLL cells with aphidicolin, which enhances dCK activity through Ser-74 phosphorylation, did not modify the conversion of CdA or F-Ara-A into their active triphosphate form. Nevertheless, the same treatment enhanced activation of gemcitabine (dFdC) into dFdCTP in CLL as well as in HCT-116 cells and produced synergistic cytotoxicity. We conclude that increasing phosphorylation of dCK on Ser-74 might constitute a valuable strategy to enhance the clinical efficacy of some NA, like dFdC, but not of CdA or F-Ara-A.


Assuntos
Antineoplásicos/metabolismo , Desoxicitidina Quinase/metabolismo , Nucleosídeos de Purina/metabolismo , Nucleosídeos de Pirimidina/metabolismo , Serina/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Afidicolina/farmacologia , Biotransformação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cladribina/química , Cladribina/metabolismo , Cladribina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina Quinase/antagonistas & inibidores , Desoxicitidina Quinase/genética , Ativação Enzimática , Células HCT116 , Células HT29 , Humanos , Cinética , Mutação , Fosforilação , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/farmacologia , Serina/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Vidarabina/análogos & derivados , Vidarabina/química , Vidarabina/metabolismo , Vidarabina/farmacologia , Gencitabina
13.
FASEB J ; 26(6): 2685-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22415305

RESUMO

We investigated whether overexpression of AMP-metabolizing enzymes in intact cells would modulate oligomycin-induced AMPK activation. Human embryonic kidney (HEK) 293T cells were transiently transfected with increasing amounts of plasmid vectors to obtain a graded increase in overexpression of AMP-deaminase (AMPD) 1, AMPD2, and soluble 5'-nucleotidase IA (cN-IA) for measurements of AMPK activation and total intracellular adenine nucleotide levels induced by oligomycin treatment. Overexpression of AMPD1 and AMPD2 slightly decreased AMP levels and oligomycin-induced AMPK activation. Increased overexpression of cN-IA led to reductions in the oligomycin-induced increases in AMP and ADP concentrations by ∼70 and 50%, respectively, concomitant with a 50% decrease in AMPK activation. The results support the view that a rise in ADP as well as AMP is important for activation of AMPK, which can thus be regulated by the adenylate energy charge. The control coefficient of cN-IA on AMP was 0.3-0.7, whereas the values for AMPD1 and AMPD2 were <0.1, suggesting that in this model cN-IA exerts a large proportion of control over intracellular AMP. Therefore, small molecule inhibition of cN-IA could be a strategy for AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Nucleotídeos de Adenina/metabolismo , Monofosfato de Adenosina/metabolismo , 5'-Nucleotidase , AMP Desaminase/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Cinética , Oligomicinas/farmacologia
14.
Leuk Lymphoma ; 53(8): 1445-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22280536

RESUMO

Aberrations of TP53 (mutations and/or deletions) are associated with a dismal prognosis in chronic lymphocytic leukemia (CLL). Complete loss of ATM is another mechanism of failed DNA damage response and also associated with poorer prognosis in CLL. However, p53 dysfunction may arise through alternative mechanisms unrelated to structural aberrations (deletion and/or mutation) of TP53 or ATM, and thus be undetectable by traditional DNA-directed approaches (fluorescence in situ hybridization [FISH], sequencing, karyotyping). In order to address the latter changes, and also to better understand the consequences of TP53/ATM aberrations, p53 functional assays have recently been developed. The purpose of dynamic assessment of p53 response in CLL is to carry out a comprehensive analysis of all mechanisms causing p53-deficient phenotype, including those unrelated to genomic aberrations of TP53 and ATM. The present review focuses on the current knowledge of p53 function assays in CLL, including important features such as technical issues, correlation with structural aberrations and clinical value.


Assuntos
Regulação Leucêmica da Expressão Gênica , Genes p53 , Leucemia Linfocítica Crônica de Células B/genética , Proteína Supressora de Tumor p53/genética , Citogenética , Dano ao DNA , Deleção de Genes , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , MicroRNAs/genética , Fenótipo , Prognóstico
15.
Arch Biochem Biophys ; 502(1): 44-52, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20637175

RESUMO

Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxynucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We recently showed that dCK was activated in vivo by phosphorylation of Ser-74. However, the protein kinase responsible was not identified. Ser-74 is located downstream a Glu-rich region, presenting similarity with the consensus phosphorylation motif of casein kinase 1 (CKI), and particularly of CKI delta. We showed that recombinant CKI delta phosphorylated several residues of bacterially overexpressed dCK: Ser-74, but also Ser-11, Ser-15, and Thr-72. Phosphorylation of dCK by CKI delta correlated with increased activity reaching at least 4-fold. Site-directed mutagenesis demonstrated that only Ser-74 phosphorylation was involved in dCK activation by CKI delta, strengthening the key role of this residue in the control of dCK activity. However, neither CKI delta inhibitors nor CKI delta siRNA-mediated knock-down modified Ser-74 phosphorylation or dCK activity in cultured cells. Moreover, these approaches did not prevent dCK activation induced by treatments enhancing Ser-74 phosphorylation. Taken together, the data preclude a role of CKI delta in the regulation of dCK activity in vivo. Nevertheless, phosphorylation of dCK by CKI delta could be a useful tool for elucidating the influence of Ser-74 phosphorylation on the structure-activity relationships in the enzyme.


Assuntos
Caseína Quinase Idelta/metabolismo , Desoxicitidina Quinase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/genética , Linhagem Celular , Desoxicitidina Quinase/química , Desoxicitidina Quinase/genética , Ativação Enzimática , Humanos , Técnicas In Vitro , Cinética , Mutagênese Sítio-Dirigida , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química
16.
Expert Opin Investig Drugs ; 19(4): 571-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20367195

RESUMO

IMPORTANCE OF THE FIELD: Despite considerable advances, B-cell chronic lymphocytic leukemia (CLL) is incurable with standard approaches. Thus, there remains a need for new therapies, particularly for patients who develop chemoresistance to DNA-targeting treatments. AICA-riboside (acadesine) is a nucleoside with a wide range of metabolic effects, including release of adenosine and activation of AMP-activated protein kinase (AMPK), which was initially developed as a cardioprotective agent. More recently, it has been shown that AICA-riboside induces apoptosis in various models of leukemia, including CLL. AREAS COVERED IN THIS REVIEW: The literature data show that apoptosis induced by AICA-riboside in CLL is not dependent on a functionally normal p53 pathway. Moreover, AICA-riboside is active towards resting and proliferative models of leukemia cells, including resistant phenotypes. Finally, studies in healthy subjects and during coronary artery bypass graft surgery show that AICA-riboside is devoid of serious toxicity. WHAT THE READER WILL GAIN: This paper reviews the mechanisms of action of AICA-riboside in normal and malignant cells and discusses how AICA-riboside could impact CLL treatment. TAKE HOME MESSAGE: We propose that AICA-riboside, which displays a relative selectivity and a favorable toxicity profile, may offer a new treatment option for CLL.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Neoplasias Hematológicas/tratamento farmacológico , Ribonucleosídeos/farmacologia , Ribonucleosídeos/uso terapêutico , Aminoimidazol Carboxamida/farmacologia , Aminoimidazol Carboxamida/uso terapêutico , Animais , Ensaios Clínicos como Assunto/tendências , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Neoplasias Hematológicas/enzimologia , Humanos
17.
Br J Haematol ; 147(5): 641-52, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19764992

RESUMO

The functional evaluation of ataxia telangiectasia mutated (ATM) and p53 was recently developed in B-cell chronic lymphocytic leukaemia (B-CLL), a disease in which the response to DNA damage is frequently altered. We identified a novel biomarker of chemosensitivity based on the induction of DNA damage by the purine nucleoside analogues (PNA) fludarabine and 2-chlorodeoxyadenosine (CdA). Using genome-wide expression profiling, it was observed that, in chemosensitive samples, PNA predominantly increased the expression of p53-dependent genes, among which PLK2 was the most highly activated at early time points. Conversely, in chemoresistant samples, p53-dependent and PLK2 responses were abolished. Using a quantitative real time polymerase chain reaction, we confirmed that PNA dose- and time-dependently increased PLK2 expression in chemosensitive but not chemoresistant B-CLL samples. Analysis of a larger cohort of B-CLL patients showed that cytotoxicity induced by PNA correlated well with PLK2 mRNA induction. Interestingly, we observed that failure to up-regulate PLK2 following PNA and chemoresistance were not strictly correlated with structural alterations in the TP53 gene. In conclusion, we propose that testing PLK2 activation after a 24-h incubation with PNA could be used to investigate the functional integrity of DNA damage-response pathways in B-CLL cells, and predict clinical sensitivity to these drugs.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/biossíntese , Leucemia Linfocítica Crônica de Células B/enzimologia , Proteínas Serina-Treonina Quinases/biossíntese , Regulação para Cima/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Morte Celular/efeitos dos fármacos , Cladribina/farmacologia , Estudos de Coortes , Dano ao DNA , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Células Tumorais Cultivadas , Vidarabina/análogos & derivados , Vidarabina/farmacologia
18.
Blood ; 114(8): 1563-75, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19541822

RESUMO

Chronic lymphocytic leukemia (CLL) is an incurable disease derived from the monoclonal expansion of CD5(+) B lymphocytes. High expression levels of ZAP-70 or CD38 and deletions of 17p13 (TP53) and 11q22-q23 (ATM) are associated with poorer overall survival and shorter time to disease progression. DNA damage and p53 play a pivotal role in apoptosis induction in response to conventional chemotherapy, because deletions of ATM or p53 identify CLL patients with resistance to treatment. Forodesine is a transition-state inhibitor of the purine nucleoside phosphorylase with antileukemic activity. We show that forodesine is highly cytotoxic as single agent or in combination with bendamustine and rituximab in primary leukemic cells from CLL patients regardless of CD38/ZAP-70 expression and p53 or ATM deletion. Forodesine activates the mitochondrial apoptotic pathway by decreasing the levels of antiapoptotic MCL-1 protein and induction of proapoptotic BIM protein. Forodesine induces transcriptional up-regulation of p73, a p53-related protein able to overcome the resistance to apoptosis of CLL cells lacking functional p53. Remarkably, no differences in these apoptotic markers were observed based on p53 or ATM status. In conclusion, forodesine induces apoptosis of CLL cells bypassing the DNA-damage/ATM/p53 pathway and might represent a novel chemotherapeutic approach that deserves clinical investigation.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Nucleosídeos de Purina/farmacologia , Pirimidinonas/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/genética , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Murinos , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Cloridrato de Bendamustina , Ciclofosfamida/administração & dosagem , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Compostos de Mostarda Nitrogenada/administração & dosagem , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Nucleosídeos de Purina/administração & dosagem , Nucleosídeos de Purina/uso terapêutico , Pirimidinonas/administração & dosagem , Pirimidinonas/uso terapêutico , Rituximab , Células Tumorais Cultivadas , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Vidarabina/administração & dosagem , Vidarabina/análogos & derivados
19.
Biochem Pharmacol ; 75(7): 1451-60, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18242582

RESUMO

2-chloroadenosine (2-CAdo) is an adenosine deaminase-resistant analogue of adenosine, widely used as an adenosine receptor agonist. This compound has been shown to induce apoptosis in several cell types either via activation of adenosine receptors or via intracellular metabolism. However, the molecular mechanisms of 2-CAdo-induced apoptosis are unclear. Here, we analyzed the effects of 2-CAdo in the leukemia cell line EHEB. 2-CAdo was found to induce apoptosis in EHEB cells, as shown by caspase-3 activation, DNA fragmentation, poly(ADP-ribose) polymerase (PARP) cleavage and phosphatidylserine exposure. Cytotoxicity of 2-CAdo was completely suppressed by 5-iodotubercidin, an adenosine kinase inhibitor, indicating that apoptosis induced by 2-CAdo was the result of its intracellular metabolism. Accordingly, we found that 2-CAdo was efficiently converted into 2-chloroATP. In parallel, a decrease of intracellular ATP concentration as well as a general inhibition of macromolecular synthesis, involving DNA, RNA and protein synthesis, was observed. Moreover, 2-CAdo induced cytochrome c release into the cytosol, indicating activation of the intrinsic pathway of apoptosis. This was found associated with a decline in Mcl-1 protein level and p53-independent. Inhibition of AMP deaminase by coformycin markedly prevented ATP depletion, and also significantly reduced 2-CAdo cytotoxicity and caspase-3 activation. In conclusion, our data show that intracellular metabolism of 2-CAdo can lead to activation of the intrinsic pathway of apoptosis and that ATP depletion, in addition to the accumulation of the triphosphate analogue, contributes to 2-CAdo-induced apoptosis.


Assuntos
2-Cloroadenosina/farmacologia , Leucemia de Células B/metabolismo , 2-Cloroadenosina/farmacocinética , 2-Cloroadenosina/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Humanos , Leucemia de Células B/tratamento farmacológico , Leucemia de Células B/patologia
20.
Cancer Lett ; 253(1): 68-73, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-17350163

RESUMO

Deoxycytidine kinase (dCK) activates several antileukaemic nucleoside analogues. We have recently reported that the activity of dCK, overexpressed in HEK 293T cells, correlates with its phosphorylation level on Ser-74. Here, we show that dCK from B-cell chronic lymphocytic leukaemia (B-CLL) lymphocytes can be detected by an anti-phospho-Ser-74 antibody and that interindividual variability in dCK activity is related to its phosphorylation level on Ser-74. Moreover, pharmacological intervention modified Ser-74 phosphorylation, in close parallel with changes in dCK activity. These results suggest that activation of dCK via phosphorylation of Ser-74 might constitute a new therapeutic strategy to enhance activation and efficacy of nucleoside analogues.


Assuntos
Desoxicitidina Quinase/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Serina/metabolismo , Anticorpos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Fosforilação , Fosfosserina/imunologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA