Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5031, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866759

RESUMO

Alzheimer's disease (AD) is a brain network disorder where pathological proteins accumulate through networks and drive cognitive decline. Yet, the role of network connectivity in facilitating this accumulation remains unclear. Using in-vivo multimodal imaging, we show that the distribution of tau and reactive microglia in humans follows spatial patterns of connectivity variation, the so-called gradients of brain organization. Notably, less distinct connectivity patterns ("gradient contraction") are associated with cognitive decline in regions with greater tau, suggesting an interaction between reduced network differentiation and tau on cognition. Furthermore, by modeling tau in subject-specific gradient space, we demonstrate that tau accumulation in the frontoparietal and temporo-occipital cortices is associated with greater baseline tau within their functionally and structurally connected hubs, respectively. Our work unveils a role for both functional and structural brain organization in pathology accumulation in AD, and supports subject-specific gradient space as a promising tool to map disease progression.


Assuntos
Doença de Alzheimer , Encéfalo , Imageamento por Ressonância Magnética , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Proteínas tau/metabolismo , Masculino , Feminino , Idoso , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Microglia/metabolismo , Microglia/patologia , Idoso de 80 Anos ou mais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/diagnóstico por imagem , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos
2.
Neuroimage ; 278: 120289, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495197

RESUMO

Deep artificial neural networks (DNNs) have moved to the forefront of medical image analysis due to their success in classification, segmentation, and detection challenges. A principal challenge in large-scale deployment of DNNs in neuroimage analysis is the potential for shifts in signal-to-noise ratio, contrast, resolution, and presence of artifacts from site to site due to variances in scanners and acquisition protocols. DNNs are famously susceptible to these distribution shifts in computer vision. Currently, there are no benchmarking platforms or frameworks to assess the robustness of new and existing models to specific distribution shifts in MRI, and accessible multi-site benchmarking datasets are still scarce or task-specific. To address these limitations, we propose ROOD-MRI: a novel platform for benchmarking the Robustness of DNNs to Out-Of-Distribution (OOD) data, corruptions, and artifacts in MRI. This flexible platform provides modules for generating benchmarking datasets using transforms that model distribution shifts in MRI, implementations of newly derived benchmarking metrics for image segmentation, and examples for using the methodology with new models and tasks. We apply our methodology to hippocampus, ventricle, and white matter hyperintensity segmentation in several large studies, providing the hippocampus dataset as a publicly available benchmark. By evaluating modern DNNs on these datasets, we demonstrate that they are highly susceptible to distribution shifts and corruptions in MRI. We show that while data augmentation strategies can substantially improve robustness to OOD data for anatomical segmentation tasks, modern DNNs using augmentation still lack robustness in more challenging lesion-based segmentation tasks. We finally benchmark U-Nets and vision transformers, finding robustness susceptibility to particular classes of transforms across architectures. The presented open-source platform enables generating new benchmarking datasets and comparing across models to study model design that results in improved robustness to OOD data and corruptions in MRI.


Assuntos
Algoritmos , Aprendizado Profundo , Humanos , Benchmarking , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
3.
Front Pain Res (Lausanne) ; 4: 1094125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923650

RESUMO

Spinal cord stimulation and virtual reality therapy are established and promising techniques, respectively, for managing chronic pain, each with its unique advantages and challenges. While each therapy has been the subject of significant research interest, the prospect of combining the two modalities to offer a synergistic effect in chronic pain therapy is still in its infancy. In this narrative review, we assess the state of the field combining virtual reality as an adjunctive therapy to spinal cord stimulation in chronic pain. We also review the broader field of virtual reality therapy for acute and chronic pain, considering evidence related to feasibility in the Canadian healthcare system from cost and patient satisfaction perspectives. While early results show promise, there are unexplored aspects of spinal cord stimulation combined with virtual reality therapy, particularly long-term effects on analgesia, anxiolysis, and implications on the effectiveness and longevity of spinal cord stimulation. The infrastructure for billing virtual reality as a consult service or therapy must also catch up if it is eventually used to supplement spinal cord stimulation for chronic pain.

4.
Hum Brain Mapp ; 43(7): 2089-2108, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35088930

RESUMO

White matter hyperintensities (WMHs) are frequently observed on structural neuroimaging of elderly populations and are associated with cognitive decline and increased risk of dementia. Many existing WMH segmentation algorithms produce suboptimal results in populations with vascular lesions or brain atrophy, or require parameter tuning and are computationally expensive. Additionally, most algorithms do not generate a confidence estimate of segmentation quality, limiting their interpretation. MRI-based segmentation methods are often sensitive to acquisition protocols, scanners, noise-level, and image contrast, failing to generalize to other populations and out-of-distribution datasets. Given these concerns, we propose a novel Bayesian 3D convolutional neural network with a U-Net architecture that automatically segments WMH, provides uncertainty estimates of the segmentation output for quality control, and is robust to changes in acquisition protocols. We also provide a second model to differentiate deep and periventricular WMH. Four hundred thirty-two subjects were recruited to train the CNNs from four multisite imaging studies. A separate test set of 158 subjects was used for evaluation, including an unseen multisite study. We compared our model to two established state-of-the-art techniques (BIANCA and DeepMedic), highlighting its accuracy and efficiency. Our Bayesian 3D U-Net achieved the highest Dice similarity coefficient of 0.89 ± 0.08 and the lowest modified Hausdorff distance of 2.98 ± 4.40 mm. We further validated our models highlighting their robustness on "clinical adversarial cases" simulating data with low signal-to-noise ratio, low resolution, and different contrast (stemming from MRI sequences with different parameters). Our pipeline and models are available at: https://hypermapp3r.readthedocs.io.


Assuntos
Leucoaraiose , Substância Branca , Idoso , Teorema de Bayes , Humanos , Processamento de Imagem Assistida por Computador , Leucoaraiose/patologia , Imageamento por Ressonância Magnética/métodos , Incerteza , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA