Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 9: 888850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814741

RESUMO

Hepatocellular carcinoma (HCC) typically develops from a background of cirrhosis resulting from chronic inflammation. This inflammation is frequently associated with chronic liver diseases (CLD). The advent of next generation sequencing has enabled extensive analyses of molecular aberrations in HCC. However, less attention has been directed to the chronically inflamed background of the liver, prior to HCC emergence and during recurrence following surgery. Hepatocytes within chronically inflamed liver tissues present highly activated inflammatory signaling pathways and accumulation of a complex mutational landscape. In this altered environment, cells may transform in a stepwise manner toward tumorigenesis. Similarly, the chronically inflamed environment which persists after resection may impact the timing of HCC recurrence. Advances in research are allowing an extensive epigenomic, transcriptomic and proteomic characterization of CLD which define the emergence of HCC or its recurrence. The amount of data generated will enable the understanding of oncogenic mechanisms in HCC from the CLD perspective and provide the possibility to identify robust biomarkers or novel therapeutic targets for the treatment of primary and recurrent HCC. Importantly, biomarkers defined by the analysis of CLD tissue may permit the early detection or prevention of HCC emergence and recurrence. In this review, we compile the current omics based evidence of the contribution of CLD tissues to the emergence and recurrence of HCC.

2.
iScience ; 24(6): 102676, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34189439

RESUMO

Guided by a multi-level "deconstruction" of omental metastases, we developed a tetra (four cell)-culture model of primary human mesothelial cells, fibroblasts, adipocytes, and high-grade serous ovarian cancer (HGSOC) cell lines. This multi-cellular model replicated key elements of human metastases and allowed malignant cell invasion into the artificial omental structure. Prompted by findings in patient biopsies, we used the model to investigate the role of platelets in malignant cell invasion and extracellular matrix, ECM, production. RNA (sequencing and quantitative polymerase-chain reaction), protein (proteomics and immunohistochemistry) and image analysis revealed that platelets stimulated malignant cell invasion and production of ECM molecules associated with poor prognosis. Moreover, we found that platelet activation of mesothelial cells was critical in stimulating malignant cell invasion. Whilst platelets likely activate both malignant cells and mesothelial cells, the tetra-culture model allowed us to dissect the role of both cell types and model the early stages of HGSOC metastases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA