Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 248(13): 1103-1111, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37452705

RESUMO

Heme is a fundamental molecule for several biological processes, but when released in the extracellular space such as in hemolytic diseases, it can be toxic to cells and tissues. Hemopexin (HPX) is a circulating protein responsible for removing free heme from the circulation, whose levels can be severely depleted in conditions such as sickle cell diseases. Accordingly, increasing HPX levels represents an attractive strategy to mitigate the deleterious effects of heme in these conditions. Gene transfer of liver-produced proteins with adeno-associated virus (AAV) has been shown to be an effective and safety strategy in animal and human studies mainly in hemophilia. Here, we report the feasibility of increasing HPX levels using an AAV8 vector expressing human HPX (hHPX). C57Bl mice were injected with escalating doses of our vector, and expression was assessed by enzyme immunoassay (ELISA), Western blot, and quantitative polymerase chain reaction (qPCR). In addition, the biological activity of transgenic hHPX was confirmed using two different models of heme challenge consisting of serial heme injections or phenylhydrazine-induced hemolysis. Sustained expression of hHPX was confirmed for up to 26 weeks in plasma. Expression was dose-dependent and not associated with clinical signs of toxicity. hHPX levels were significantly reduced by heme infusions and phenylhydrazine-induced hemolysis. No clinical toxicity or laboratory signs of liver damage were observed in preliminary short-term heme challenge studies. Our results confirm that long-term expression of hHPX is feasible and safe in mice, even in the presence of heme overload. Additional studies are needed to explore the effect of transgenic HPX protein in animal models of chronic hemolysis.


Assuntos
Heme , Hemopexina , Camundongos , Humanos , Animais , Hemopexina/genética , Hemopexina/metabolismo , Hemopexina/farmacologia , Hemólise , Estudos de Viabilidade , Fatores de Transcrição , Fenil-Hidrazinas
2.
Res Pract Thromb Haemost ; : 100282, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37361399

RESUMO

Introduction: Podoplanin (PDPN gene) and CLEC-2 are involved in inflammatory hemostasis and have also been related with the pathogenesis of thrombosis. Emerging evidence also suggest that podoplanin can exert protective effects in sepsis and in acute lung injury. In lungs, podoplanin is co-expressed with ACE2, which is the main entry receptor for SARS-CoV-2. Aim: To explore the role of podoplanin and CLEC-2 in COVID-19. Methods: Circulating levels of podoplanin and CLEC-2 were measured in 30 consecutive COVID-19 patients admitted due to hypoxia, and in 30 age- and sex-matched healthy individuals. Podoplanin expression in lungs from patients who died of COVID-19 was obtained from two independent public databases of single-cell RNAseq from which data from control lungs were also available. Results: Circulating podoplanin levels were lower in COVID-19, while no difference was observed in CLEC-2 levels. Podoplanin levels were significantly inversely correlated with markers of coagulation, fibrinolysis and innate immunity. scRNAseq data confirmed that PDPN is co-expressed with ACE2 in pneumocytes, and showed that PDPN expression is lower in this cell compartment in lungs from patients with COVID-19. Conclusion: Circulating levels of podoplanin are lower in COVID-19, and the magnitude of this reduction is correlated with hemostasis activation. We also demonstrate the downregulation of PDPN at the transcription level in pneumocytes. Together, our exploratory study questions whether an acquired podoplanin deficiency could be involved in the pathogenesis of acute lung injury in COVID-19, and warrant additional studies to confirm and refine these findings.

3.
Front Physiol ; 14: 1113968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895630

RESUMO

Endothelial barrier (EB) disruption contributes to acute lung injury in COVID-19, and levels of both VEGF-A and Ang-2, which are mediators of EB integrity, have been associated with COVID-19 severity. Here we explored the participation of additional mediators of barrier integrity in this process, as well as the potential of serum from COVID-19 patients to induce EB disruption in cell monolayers. In a cohort from a clinical trial consisting of thirty patients with COVID-19 that required hospital admission due to hypoxia we demonstrate that i) levels of soluble Tie2 were increase, and of soluble VE-cadherin were decreased when compared to healthy individuals; ii) sera from these patients induce barrier disruption in monolayers of endothelial cells; and iii) that the magnitude of this effect is proportional to disease severity and to circulating levels of VEGF-A and Ang-2. Our study confirms and extends previous findings on the pathogenesis of acute lung injury in COVID-19, reinforcing the concept that EB is a relevant component of this disease. Our results pave the way for future studies that can refine our understanding of the pathogenesis of acute lung injury in viral respiratory disorders, and contribute to the identification of new biomarkers and therapeutic targets for these conditions.

4.
Front Immunol ; 11: 535147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381108

RESUMO

Free extracellular heme has been shown to activate several compartments of innate immunity, acting as a danger-associated molecular pattern (DAMP) in hemolytic diseases. Although localized endothelial barrier (EB) disruption is an important part of inflammation that allows circulating leukocytes to reach inflamed tissues, non-localized/deregulated disruption of the EB can lead to widespread microvascular hyperpermeability and secondary tissue damage. In mouse models of sickle cell disease (SCD), EB disruption has been associated with the development of a form of acute lung injury that closely resembles acute chest syndrome (ACS), and that can be elicited by acute heme infusion. Here we explored the effect of heme on EB integrity using human endothelial cell monolayers, in experimental conditions that include elements that more closely resemble in vivo conditions. EB integrity was assessed by electric cell-substrate impedance sensing in the presence of varying concentrations of heme and sera from SCD patients or healthy volunteers. Heme caused a dose-dependent decrease of the electrical resistance of cell monolayers, consistent with EB disruption, which was confirmed by staining of junction protein VE-cadherin. In addition, sera from SCD patients, but not from healthy volunteers, were also capable to induce EB disruption. Interestingly, these effects were not associated with total heme levels in serum. However, when heme was added to sera from SCD patients, but not from healthy volunteers, EB disruption could be elicited, and this effect was associated with hemopexin serum levels. Together our in vitro studies provide additional support to the concept of heme as a DAMP in hemolytic conditions.


Assuntos
Anemia Falciforme/imunologia , Antígenos CD/imunologia , Caderinas/imunologia , Heme/imunologia , Hemopexina/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Anemia Falciforme/sangue , Antígenos CD/metabolismo , Caderinas/metabolismo , Heme/metabolismo , Hemopexina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA