Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Pregnancy ; 2022: 3922368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494491

RESUMO

Preeclampsia is a serious pregnancy disorder which in extreme cases may lead to maternal and fetal injury or death. Preexisting conditions which increase oxidative stress, e.g., hypertension and diabetes, increase the mother's risk to develop preeclampsia. Previously, we established that when the extracellular matrix is exposed to oxidative stress, trophoblast function is impaired, and this may lead to improper placentation. We investigated how the oxidative ECM present in preeclampsia alters the behavior of first trimester extravillous trophoblasts. We demonstrate elevated levels of advanced glycation end products (AGE) and lipid oxidation end product 4-hydroxynonenal in preeclamptic ECM (28%, and 32% increase vs control, respectively) accompanied with 35% and 82% more 3-chlorotyrosine and 3-nitrotyrosine vs control, respectively. Furthermore, we hypothesized that 670 nm phototherapy, which has antioxidant properties, reverses the observed trophoblast dysfunction as depicted in the improved migration and reduction in apoptosis. Since NO is critical for placentation, we examined eNOS activity in preeclamptic placentas compared to healthy ones and found no differences; however, 670 nm light treatment triggered enhanced NO availability presumably by using alternative NO sources. Light exposure decreased apoptosis and restored trophoblast migration to levels in trophoblasts cultured on preeclamptic ECM. Moreover, 670 nm irradiation restored expression of Transforming Growth Factor (TGFß) and Placental Growth Factor (PLGF) to levels observed in trophoblasts cultured on healthy placental ECM. We conclude the application of 670 nm light can successfully mitigate the damaged placental microenvironment of late onset preeclampsia as depicted by the restored trophoblast behavior.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Matriz Extracelular/metabolismo , Feminino , Humanos , Placenta/metabolismo , Fator de Crescimento Placentário , Placentação , Pré-Eclâmpsia/metabolismo , Gravidez , Trofoblastos/metabolismo
2.
J Am Heart Assoc ; 8(22): e012792, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31718444

RESUMO

Background The SNRK (sucrose-nonfermenting-related kinase) enzyme is critical for cardiac function. However, the underlying cause for heart failure observed in Snrk cardiac conditional knockout mouse is unknown. Methods and Results Previously, 6-month adult mice knocked out for Snrk in cardiomyocytes (CMs) displayed left ventricular dysfunction. Here, 4-month adult mice, on angiotensin II (Ang II) infusion, show rapid decline in cardiac systolic function, which leads to heart failure and death in 2 weeks. These mice showed increased expression of nuclear factor κ light chain enhancer of activated B cells (NF-κB), inflammatory signaling proteins, proinflammatory proteins in the heart, and fibrosis. Interestingly, under Ang II infusion, mice knocked out for Snrk in endothelial cells did not show significant systolic or diastolic dysfunction. Although an NF-κB inflammation signaling pathway was increased in Snrk knockout endothelial cells, this did not lead to fibrosis or mortality. In hearts of adult mice knocked out for Snrk in CMs, we also observed NF-κB pathway activation in CMs, and an increased presence of Mac2+ macrophages was observed in basal and Ang II-infused states. In vitro analysis of Snrk knockdown HL-1 CMs revealed similar upregulation of the NF-κB signaling proteins and proinflammatory proteins that was exacerbated on Ang II treatment. The Ang II-induced NF-κB pathway-mediated proinflammatory effects were mediated in part through protein kinase B or AKT, wherein AKT inhibition restored the proinflammatory signaling protein levels to baseline in Snrk knockdown HL-1 CMs. Conclusions During heart failure, SNRK acts as a cardiomyocyte-specific repressor of cardiac inflammation and fibrosis.


Assuntos
Células Endoteliais/metabolismo , Insuficiência Cardíaca/genética , Inflamação/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Angiotensina II/farmacologia , Animais , Linhagem Celular , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Coração/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Técnicas In Vitro , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Miocárdio/patologia , Vasoconstritores/farmacologia , Disfunção Ventricular Esquerda
3.
NPJ Precis Oncol ; 3: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602400

RESUMO

Metastatic outcomes depend on the interactions of metastatic cells with a specific organ microenvironment. Our previous studies have shown that triple-negative breast cancer (TNBC) MDA-MB-231 cells passaged in astrocyte-conditioned medium (ACM) show proclivity to form brain metastases, but the underlying mechanism is unknown. The combination of microarray analysis, qPCR, and ELISA assay were carried out to demonstrate the ACM-induced expression of angiopoietin-like 4 (ANGPTL4) in TNBC cells. A stable ANGPTL4-knockdown MDA-MB-231 cell line was generated by ANGPTL4 short-hairpin RNA (shRNA) and inoculated into mice via left ventricular injection to evaluate the role of ANGPTL4 in brain metastasis formation. The approaches of siRNA, neutralizing antibodies, inhibitors, and immunoprecipitation were used to demonstrate the involved signaling molecules. We first found that ACM-conditioned TNBC cells upregulated the expression of ANGPTL4, a secreted glycoprotein whose effect on tumor progression is known to be tumor microenvironment- and tumor-type dependent. Knockdown of ANGPTL4 in TNBC MDA-MB-231 cells with shRNA decreased ACM-induced tumor cell metastatic growth in the brain and attributed to survival in a mouse model. Furthermore, we identified that astrocytes produced transforming growth factor-beta 2 (TGF-ß2), which in part is responsible for upregulation of ANGPTL4 expression in TNBC through induction of SMAD signaling. Moreover, we identified that tumor cells communicate with astrocytes, where tumor cell-derived interleukin-1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α) increased the expression of TGF-ß2 in astrocytes. Collectively, these findings indicate that the invading TNBC cells interact with astrocytes in the brain microenvironment that facilitates brain metastases of TNBC cells through a TGF-ß2/ANGPTL4 axis. This provides groundwork to target ANGPTL4 as a treatment for breast cancer brain metastases.

4.
Arterioscler Thromb Vasc Biol ; 38(2): 373-385, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242271

RESUMO

OBJECTIVE: SNRK (sucrose nonfermenting 1-related kinase) is a novel member of the AMPK (adenosine monophosphate-activated protein kinase)-related superfamily that is activated in the process of angiogenesis. Currently, little is known about the function of SNRK in angiogenesis in the physiological and pathological conditions. APPROACH AND RESULTS: In this study, in Snrk global heterozygous knockout mice, retina angiogenesis and neovessel formation after hindlimb ischemia were suppressed. Consistently, mice with endothelial cell (EC)-specific Snrk deletion exhibited impaired retina angiogenesis, and delayed perfusion recovery and exacerbated muscle apoptosis in ischemic hindlimbs, compared with those of littermate wide-type mice. Endothelial SNRK expression was increased in the extremity vessel samples from nonischemic human. In ECs cultured in hypoxic conditions, HIF1α (hypoxia inducible factor 1α) bound to the SNRK promoter to upregulate SNRK expression. In the nuclei of hypoxic ECs, SNRK complexed with SP1 (specificity protein 1), and together, they bound to an SP1-binding motif in the ITGB1 (ß1 integrin) promoter, resulting in enhanced ITGB1 expression and promoted EC migration. Furthermore, SNRK or SP1 deficiency in ECs ameliorated hypoxia-induced ITGB1 expression and, consequently, inhibited EC migration and angiogenesis. CONCLUSIONS: Taken together, our data have revealed that SNRK/SP1-ITGB1 signaling axis promotes angiogenesis in vivo.


Assuntos
Células Endoteliais/enzimologia , Isquemia/enzimologia , Pulmão/irrigação sanguínea , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Proteínas Serina-Treonina Quinases/metabolismo , Vasos Retinianos/enzimologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Apoptose , Velocidade do Fluxo Sanguíneo , Caderinas/genética , Caderinas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Regulação Enzimológica da Expressão Gênica , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Isquemia/genética , Isquemia/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Fluxo Sanguíneo Regional , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
5.
PLoS One ; 11(12): e0167246, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936095

RESUMO

The mitogen-activated protein kinase (MAPK) pathway regulates many key cellular processes such as differentiation, apoptosis, and survival. The final proteins in this pathway, ERK1/2, are regulated by dual specificity phosphatase 5 (DUSP5). DUSP5 is a nuclear, inducible phosphatase with high affinity and fidelity for ERK1/2. By regulating the final step in the MAPK signaling cascade, DUSP5 exerts strong regulatory control over a central cellular pathway. Like other DUSPs, DUSP5 plays an important role in immune function. In this study, we have utilized new knockout mouse reagents to explore its function further. We demonstrate that global loss of DUSP5 does not result in any gross phenotypic changes. However, loss of DUSP5 affects memory/effector CD8+ T cell populations in response to acute viral infection. Specifically, Dusp5-/- mice have decreased proportions of short-lived effector cells (SLECs) and increased proportions of memory precursor effector cells (MPECs) in response to infection. Further, we show that this phenotype is T cell intrinsic; a bone marrow chimera model restricting loss of DUSP5 to the CD8+ T cell compartment displays a similar phenotype. Dusp5-/- T cells also display increased proliferation, increased apoptosis, and altered metabolic profiles, suggesting that DUSP5 is a pro-survival protein in T cells.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Fosfatases de Especificidade Dupla/genética , Linfócitos T/metabolismo , Animais , Western Blotting , Linfócitos T CD8-Positivos/enzimologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Sobrevivência Celular/genética , Células Cultivadas , Fosfatases de Especificidade Dupla/metabolismo , Regulação Enzimológica da Expressão Gênica , Interferon gama/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/enzimologia , Linfócitos T/virologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Circ Cardiovasc Genet ; 9(6): 474-486, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27780848

RESUMO

BACKGROUND: Cardiac metabolism is critical for the functioning of the heart, and disturbance in this homeostasis is likely to influence cardiac disorders or cardiomyopathy. Our laboratory has previously shown that SNRK (sucrose nonfermenting related kinase) enzyme, which belongs to the AMPK (adenosine monophosphate-activated kinase) family, was essential for cardiac metabolism in mammals. Snrk global homozygous knockout (KO) mice die at postnatal day 0, and conditional deletion of Snrk in cardiomyocytes (Snrk cmcKO) leads to cardiac failure and death by 8 to 10 months. METHODS AND RESULTS: We performed additional cardiac functional studies using echocardiography and identified further cardiac functional deficits in Snrk cmcKO mice. Nuclear magnetic resonance-based metabolomics analysis identified key metabolic pathway deficits in SNRK knockdown cardiomyocytes in vitro. Specifically, metabolites involved in lipid metabolism and oxidative phosphorylation are altered, and perturbations in these pathways can result in cardiac function deficits and heart failure. A phosphopeptide-based proteomic screen identified ROCK (Rho-associated kinase) as a putative substrate for SNRK, and mass spec-based fragment analysis confirmed key amino acid residues on ROCK that are phosphorylated by SNRK. Western blot analysis on heart lysates from Snrk cmcKO adult mice and SNRK knockdown cardiomyocytes showed increased ROCK activity. In addition, in vivo inhibition of ROCK partially rescued the in vivo Snrk cmcKO cardiac function deficits. CONCLUSIONS: Collectively, our data suggest that SNRK in cardiomyocytes is responsible for maintaining cardiac metabolic homeostasis, which is mediated in part by ROCK, and alteration of this homeostasis influences cardiac function in the adult heart.


Assuntos
Células-Tronco Embrionárias/enzimologia , Metabolismo Energético , Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Células Cultivadas , Ecocardiografia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/patologia , Metabolismo Energético/efeitos dos fármacos , Fibrose , Predisposição Genética para Doença , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Homozigoto , Células Endoteliais da Veia Umbilical Humana/enzimologia , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação Oxidativa , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Transdução de Sinais , Transfecção , Quinases Associadas a rho/antagonistas & inibidores
7.
Dev Biol ; 410(2): 190-201, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26746789

RESUMO

Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Here, we further demonstrated the roles of NgBR in regulating vasculature development in mouse embryo and primitive blood vessel formation in embryoid body culture systems, respectively. Our results showed that NgBR homozygous knockout mice are embryonically lethal at E7.5 or earlier, and Tie2Cre-mediated endothelial cell-specific NgBR knockout (NgBR ecKO) mice die at E11.5 and have severe blood vessel assembly defects in embryo. In addition, mutant embryos exhibit dilation of cerebral blood vessel, resulting in thin-walled endothelial caverns. The similar vascular defects also were detected in Cdh5(PAC)-CreERT2 NgBR inducible ecKO mice. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. Mechanistically, NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also decreases the expression of CCM1 and CCM2 proteins. Furthermore, we performed immunofluorescence (IF) staining of NgBR in human cerebral cavernous malformation patient tissue sections. The quantitative analysis results showed that NgBR expression levels in CD31 positive endothelial cells is significantly decreased in patient tissue sections. These results suggest that NgBR may be one of important genes coordinating the cerebral vasculature development.


Assuntos
Vasos Sanguíneos/embriologia , Circulação Cerebrovascular , Receptores de Superfície Celular/genética , Animais , Feminino , Camundongos , Camundongos Knockout , Gravidez
8.
PLoS One ; 10(12): e0144185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26692198

RESUMO

Elevated plasma triglycerides are associated with increased susceptibility to heart disease and stroke, but the mechanisms behind this relationship are unclear. A clearer understanding of gene products which influence plasma triglycerides might help identify new therapeutic targets for these diseases. The Endothelial Cell Surface expressed Chemotaxis and apoptosis Regulator (ECSCR) was initially studied as an endothelial cell marker, but has recently been identified in white adipocytes, the primary storage cell type for triglycerides. Here we confirm ECSCR expression in white adipocytes and show that Ecscr knockout mice show elevated fasting plasma triglycerides. At a cellular level, cultured 3T3-L1 adipocytes silenced for Ecscr show a blunted Akt phosphorylation response. Additionally we show that the phosphatase and tensin homology containing (PTEN) lipid phosphatase association with ECSCR is increased by insulin stimulation. These data suggest a scenario by which ECSCR contributes to control of white adipocyte lipolysis. In this scenario, white adipocytes lacking Ecscr display elevated PTEN activity, thereby reducing AKT activation and impairing insulin-mediated suppression of lipolysis. Collectively, these results suggest that ECSCR plays a critical function in regulating lipolysis in white adipose tissue.


Assuntos
Adipócitos Brancos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Lipólise/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Células 3T3-L1 , Adipócitos Brancos/citologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Membrana , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
9.
Biol Open ; 4(1): 48-61, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25505152

RESUMO

In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day 0. Microarray analysis of embryonic day 17.5 Snrk hearts, and blood profile of neonates display defect in lipid metabolic pathways. SNRK knockdown CMs showed altered phospho-acetyl-coA carboxylase and phospho-AMPK levels similar to global and endothelial conditional KO mouse. Finally, adult cardiac conditional KO mouse displays severe cardiac functional defects and lethality. Our results suggest that Snrk is essential for maintaining cardiac metabolic homeostasis, and shows an autonomous role for SNRK during mammalian development.

10.
Blood ; 121(11): 2127-34, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23325830

RESUMO

Low molecular weight heparin (LMWH) is being tested as an experimental drug for improving pregnancy outcome in women with inherited thrombophilia and placenta-mediated pregnancy complications, such as recurrent pregnancy loss. The role of thrombotic processes in these disorders remains unproven, and the issue of antithrombotic prophylaxis is intensely debated. Using a murine model of factor V Leiden-associated placental failure, we show that treatment of the mother with LMWH allows placental development to proceed and affords significant protection from fetal loss. Nonetheless, the therapeutic effect of LMWH is not replicated by anticoagulation; fondaparinux and a direct Xa inhibitor, C921-78, achieve anticoagulation similar to LMWH but produce little or no improvement in pregnancy outcome. Genetic attenuation of maternal platelet aggregation is similarly ineffective. In contrast, even a partial loss of thrombin sensitivity of maternal platelets protects pregnancies. Neonates born from these pregnancies are growth retarded, suggesting that placental function is only partially restored. The placentae are smaller but do not reveal any evidence of thrombosis. Our data demonstrate an anticoagulation-independent role of LMWH in protecting pregnancies and provide evidence against the involvement of thrombotic processes in thrombophilia-associated placental failure. Importantly, thrombin-mediated maternal platelet activation remains central in the mechanism of placental failure.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Fator V/fisiologia , Heparina/uso terapêutico , Camundongos Knockout , Doenças Placentárias/tratamento farmacológico , Doenças Placentárias/etiologia , Gravidez de Alto Risco , Animais , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Coagulação Sanguínea/genética , Embrião de Mamíferos , Fator V/genética , Feminino , Heparina/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Placentárias/genética , Gravidez , Complicações Hematológicas na Gravidez/tratamento farmacológico , Complicações Hematológicas na Gravidez/etiologia , Complicações Hematológicas na Gravidez/genética , Gravidez de Alto Risco/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA