Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
JAC Antimicrob Resist ; 6(1): dlae025, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38410249

RESUMO

Objectives: Assessing the therapeutic potential of a novel antimicrobial pseudopeptide, Pep16, both in vitro and in vivo for the treatment of septic arthritis caused by Staphylococcus aureus. Methods: Seven clinical isolates of S. aureus (two MRSA and five MSSA) were studied. MICs of Pep16 and comparators (vancomycin, teicoplanin, daptomycin and levofloxacin) were determined through the broth microdilution method. The intracellular activity of Pep16 and levofloxacin was assessed in two models of infection using non-professional (osteoblasts MG-63) or professional (macrophages THP-1) phagocytic cells. A mouse model of septic arthritis was used to evaluate the in vivo efficacy of Pep16 and vancomycin. A preliminary pharmacokinetic (PK) analysis was performed by measuring plasma concentrations using LC-MS/MS following a single subcutaneous injection of Pep16 (10 mg/kg). Results: MICs of Pep16 were consistently at 8 mg/L for all clinical isolates of S. aureus (2- to 32-fold higher to those of comparators) while MBC/MIC ratios confirmed its bactericidal activity. Both Pep16 and levofloxacin (when used at 2 × MIC) significantly reduced the bacterial load of all tested isolates (two MSSA and two MRSA) within both osteoblasts and macrophages. In MSSA-infected mice, Pep16 demonstrated a significant (∼10-fold) reduction on bacterial loads in knee joints. PK analysis following a single subcutaneous administration of Pep16 revealed a gradual increase in plasma concentrations, reaching a peak of 5.6 mg/L at 12 h. Conclusions: Pep16 is a promising option for the treatment of septic arthritis due to S. aureus, particularly owing to its robust intracellular activity.

2.
Antibiotics (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36671282

RESUMO

Colistin is a drug of last resort to treat extreme drug-resistant Enterobacterales, but is limited by dose-dependent toxicity and the emergence of resistance. A recently developed antimicrobial pseudopeptide, Pep16, which acts on the cell membrane, may be synergistic with colistin and limit the emergence of resistance. We investigated Pep16 activity against Escherichia coli with varying susceptibility to colistin, in vitro and in a murine peritonitis model. Two isogenic derivatives of E. coli CFT073 (susceptible and resistant to colistin) and 2 clinical isolates (susceptible (B119) and resistant to colistin (Af31)) were used. Pep16 activity, alone and in combination with colistin, was determined in vitro (checkerboard experiments, time-kill curves, and flow cytometry to investigate membrane permeability). Toxicity and pharmacokinetic analyses of subcutaneous Pep16 were performed in mice, followed by the investigation of 10 mg/kg Pep16 + 10 mg/kg colistin (mimicking human concentrations) in a murine peritonitis model. Pep16 alone was inactive (MICs = 32-64 mg/L; no bactericidal effect). A concentration-dependent bactericidal synergy of Pep16 with colistin was evidenced on all strains, confirmed by flow cytometry. In vivo, Pep16 alone was ineffective. When Pep16 and colistin were combined, a significant decrease in bacterial counts in the spleen was evidenced, and the combination prevented the emergence of colistin-resistant mutants, compared to colistin alone. Pep16 synergizes with colistin in vitro, and the combination is more effective than colistin alone in a murine peritonitis by reducing bacterial counts and the emergence of resistance. Pep16 may optimize colistin use, by decreasing the doses needed, while limiting the emergence of colistin-resistant mutants.

3.
Nucleic Acids Res ; 50(15): 8529-8546, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35904807

RESUMO

Staphylococcus aureus, a human opportunist pathogen, adjusts its metabolism to cope with iron deprivation within the host. We investigated the potential role of small non-coding RNAs (sRNAs) in dictating this process. A single sRNA, named here IsrR, emerged from a competition assay with tagged-mutant libraries as being required during iron starvation. IsrR is iron-repressed and predicted to target mRNAs expressing iron-containing enzymes. Among them, we demonstrated that IsrR down-regulates the translation of mRNAs of enzymes that catalyze anaerobic nitrate respiration. The IsrR sequence reveals three single-stranded C-rich regions (CRRs). Mutational and structural analysis indicated a differential contribution of these CRRs according to targets. We also report that IsrR is required for full lethality of S. aureus in a mouse septicemia model, underscoring its role as a major contributor to the iron-sparing response for bacterial survival during infection. IsrR is conserved among staphylococci, but it is not ortholog to the proteobacterial sRNA RyhB, nor to other characterized sRNAs down-regulating mRNAs of iron-containing enzymes. Remarkably, these distinct sRNAs regulate common targets, illustrating that RNA-based regulation provides optimal evolutionary solutions to improve bacterial fitness when iron is scarce.


Assuntos
RNA Bacteriano , Pequeno RNA não Traduzido , Animais , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Ferro/metabolismo , Camundongos , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173051

RESUMO

Severe sepsis induces a sustained immune dysfunction associated with poor clinical behavior. In particular, lymphopenia along with increased lymphocyte apoptosis and decreased lymphocyte proliferation, enhanced circulating regulatory T cells (Treg), and the emergence of myeloid-derived suppressor cells (MDSCs) have all been associated with persistent organ dysfunction, secondary infections, and late mortality. The mechanisms involved in MDSC-mediated T cell dysfunction during sepsis share some features with those described in malignancies such as arginine deprivation. We hypothesized that increasing arginine availability would restore T cell function and decrease sepsis-induced immunosuppression. Using a mouse model of sepsis based on cecal ligation and puncture and secondary pneumonia triggered by methicillin-resistant Staphylococcus aureus inoculation, we demonstrated that citrulline administration was more efficient than arginine in increasing arginine plasma levels and restoring T cell mitochondrial function and proliferation while reducing sepsis-induced Treg and MDSC expansion. Because there is no specific therapeutic strategy to restore immune function after sepsis, we believe that our study provides evidence for developing citrulline-based clinical studies in sepsis.


Assuntos
Citrulina/farmacologia , Mitocôndrias/metabolismo , Sepse/tratamento farmacológico , Animais , Arginina/deficiência , Arginina/metabolismo , Disponibilidade Biológica , Citrulina/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Tolerância Imunológica/imunologia , Terapia de Imunossupressão/métodos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Sepse/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia
5.
Front Microbiol ; 12: 757227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858368

RESUMO

The aim of this study was to evaluate the role of the regulatory small RNA (sRNA) Ern0160 in gastrointestinal tract (GIT) colonization by Enterococcus faecium. For this purpose, four strains of E. faecium were used, Aus0004 (WT), an ern0160-deleted Aus0004 mutant (Δ0160), a trans-complemented Δ0160 strain overexpressing ern0160 (Δ0160_0160), and a strain Δ0160 with an empty pAT29 vector (Δ0160_pAT29). Strains were studied both in vitro and in vivo, alone and in competitive assays. In in vitro experiments, no difference was observed between WT and Δ0160 strains cultured single while Δ0160_0160 strain grew more slowly than Δ0160_pAT29. In competitive assays, the WT strain was predominant compared to the deleted strain Δ0160 at the end of the experiment. Then, in vivo experiments were performed using a GIT colonization mouse model. Several existing models of GIT colonization were compared while a novel one, combining ceftriaxone and amoxicillin, was developed. A GIT colonization was performed with each strain alone, and no significant difference was noticed. By contrast, significant results were obtained with co-colonization experiments. With WT + Δ0160 suspension, a significant advantage for the WT strain was observed from day 5 to the end of the protocol, suggesting the involvement of ern0160 in GIT colonization. With Δ0160_0160 + Δ0160_pAT29 suspension, the strain with the empty vector took the advantage from day 3 to the end of the protocol, suggesting a deleterious effect of ern0160 overexpression. Altogether, these findings demonstrate the potential implication of Ern0160 in GIT colonization of E. faecium. Further investigations are needed for the identification of sRNA target(s) in order to decipher underlying molecular mechanisms.

6.
Nucleic Acids Res ; 49(18): 10644-10656, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34554192

RESUMO

Staphylococcus aureus is an opportunistic human and animal pathogen with an arsenal of virulence factors that are tightly regulated during bacterial infection. The latter is achieved through a sophisticated network of regulatory proteins and regulatory RNAs. Here, we describe the involvement of a novel prophage-carried small regulatory S. aureus RNA, SprY, in the control of virulence genes. An MS2-affinity purification assay reveals that SprY forms a complex in vivo with RNAIII, a major regulator of S. aureus virulence genes. SprY binds to the 13th stem-loop of RNAIII, a key functional region involved in the repression of multiple mRNA targets. mRNAs encoding the repressor of toxins Rot and the extracellular complement binding protein Ecb are among the targets whose expression is increased by SprY binding to RNAIII. Moreover, SprY decreases S. aureus hemolytic activity and virulence. Our results indicate that SprY titrates RNAIII activity by targeting a specific stem loop. Thus, we demonstrate that a prophage-encoded sRNA reduces the pathogenicity of S. aureus through RNA sponge activity.


Assuntos
RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Animais , Feminino , Regulação Bacteriana da Expressão Gênica , Hemólise , Camundongos , RNA Bacteriano/química , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Virulência/genética
7.
PLoS Biol ; 17(7): e3000337, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31287812

RESUMO

Antibiotics are a medical wonder, but an increasing frequency of resistance among most human pathogens is rendering them ineffective. If this trend continues, the consequences for public health and for the general community could be catastrophic. The current clinical pipeline, however, is very limited and is dominated by derivatives of established classes, the "me too" compounds. Here, we have exploited our recent identification of a bacterial toxin to transform it into antibiotics active on multidrug-resistant (MDR) gram-positive and -negative bacterial pathogens. We generated a new family of peptidomimetics-cyclic heptapseudopeptides-inspired from a natural bacterial peptide. Out of the 4 peptides studied, 2 are effective against methicillin-resistant Staphylococcus aureus (MRSA) in mild and severe sepsis mouse models without exhibiting toxicity on human erythrocytes and kidney cells, zebrafish embryos, and mice. These new compounds are safe at their active doses and above, without nephrotoxicity. Efficacy was also demonstrated against Pseudomonas aeruginosa and MRSA in a mouse skin infection model. Importantly, these compounds did not result in resistance after serial passages for 2 weeks and 4 or 6 days' exposure in mice. Activity of heptapseudopeptides was explained by the ability of unnatural amino acids to strengthen dynamic association with bacterial lipid bilayers and to induce membrane permeability, leading to bacterial death. Based on structure determination, we showed that cationic domains surrounded by an extended hydrophobic core could improve bactericidal activity. Because 2 peptide analogs, Pep 16 and Pep19, are effective against both MRSA and P. aeruginosa in severe sepsis and skin infection models, respectively, we believe that these peptidomimetics are promising lead candidates for drug development. We have identified potential therapeutic agents that can provide alternative treatments against antimicrobial resistance. Because the compounds are potential leads for therapeutic development, the next step is to start phase I clinical trials.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pele/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/síntese química , Bactérias/crescimento & desenvolvimento , Bactérias/ultraestrutura , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pseudomonas aeruginosa/fisiologia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Peixe-Zebra
8.
Nucleic Acids Res ; 45(8): 4994-5007, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28369640

RESUMO

Bacterial small regulatory RNAs (sRNAs) play a major role in the regulation of various cellular functions. Most sRNAs interact with mRNA targets via an antisense mechanism, modifying their translation and/or degradation. Despite considerable progresses in discovering sRNAs in Gram-positive bacteria, their functions, for the most part, are unknown. This is mainly due to difficulties in identifying their targets. To aid in the identification of sRNA targets in Gram-positive bacteria, we set up an in vivo method for fast analysis of sRNA-mediated post-transcriptional control at the 5΄ regions of target mRNAs. The technology is based on the co-expression of an sRNA and a 5΄ sequence of an mRNA target fused to a green fluorescent protein (GFP) reporter. The system was challenged on Staphylococcus aureus, an opportunistic Gram-positive pathogen. We analyzed several established sRNA-mRNA interactions, and in addition, we identified the ecb mRNA as a novel target for SprX2 sRNA. Using our in vivo system in combination with in vitro experiments, we demonstrated that SprX2 uses an antisense mechanism to prevent ecb mRNA translation initiation. Furthermore, we used our reporter assay to validate sRNA regulations in other Gram-positive organisms, Bacillus subtilis and Listeria monocytogenes. Overall, our method is broadly applicable to challenge the predicted sRNA-mRNA interactions in Gram-positive bacteria.


Assuntos
RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/química , Humanos , Listeria monocytogenes/genética , Processamento Pós-Transcricional do RNA/genética , RNA Bacteriano/química , Pequeno RNA não Traduzido/química , Análise de Sequência de RNA , Infecções Estafilocócicas/genética , Staphylococcus aureus/química , Staphylococcus aureus/patogenicidade
9.
Emerg Infect Dis ; 22(9): 1570-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27224202

RESUMO

Staphylococcus aureus is a commensal bacterium and pathogen. Identifying biomarkers for the transition from colonization to disease caused by this organism would be useful. Several S. aureus small RNAs (sRNAs) regulate virulence. We investigated presence and expression of 8 sRNAs in 83 S. aureus strains from 42 patients with sepsis or septic shock and 41 asymptomatic colonized carriers. Small pathogenicity island sRNAs sprB and sprC were clade specific. Six sRNAs had variable expression not correlated with clinical status. Expression of RNAIII was lower in strains from septic shock patients than in strains from colonized patients. When RNAIII was associated with expression of sprD, colonizing strains could be discriminated from strains in patients with bloodstream infections, including patients with sepsis and septic shock. Isolates associated with colonization might have sRNAs with target expression different from those of disease isolates. Monitoring expression of RNAIII and sprD could help determine severity of bloodstream infections.


Assuntos
Bacteriemia/microbiologia , RNA Viral , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Doenças Assintomáticas , Proteínas de Bactérias/genética , Biomarcadores , Regulação Bacteriana da Expressão Gênica , Humanos , Tipagem de Sequências Multilocus , Filogenia , RNA Bacteriano/genética , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus/classificação , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética
10.
Nucleic Acids Res ; 43(19): 9232-48, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26240382

RESUMO

Staphylococcus aureus pathogenesis is directed by regulatory proteins and RNAs. We report the case of an RNA attenuating virulence and host uptake, possibly to sustain commensalism. A S. aureus sRNA, SprC (srn_3610), reduced virulence and bacterial loads in a mouse infection model. S. aureus deleted for sprC became more virulent and increased bacterial dissemination in colonized animals. Conversely, inducing SprC expression lowered virulence and the bacterial load. Without sprC, S. aureus phagocytosis by monocytes and macrophages was higher, whereas bacteria were internalized at lower yields when SprC expression was stimulated. Without sprC, higher internalization led to a greater number of extracellular bacteria, facilitating colonization. SprC expression decreased after phagocytosis, concurring with the facilitated growth of bacteria lacking the sRNA in the presence of an oxidant. The major staphylococcal autolysin facilitates S. aureus uptake by human phagocytes. ATL proved to be negatively regulated by SprC. The SprC domains involved in pairing with atl mRNA were analyzed. The addition of ATL reduced phagocytosis of bacteria lacking sprC with no effects on wild-type bacterial uptake, implying that SprC influences phagocytosis, at least in part, by controlling ATL. Since the control of SprC on ATL was modest, other factors must contribute to atl regulation.


Assuntos
Fagocitose , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Animais , Linhagem Celular , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Estresse Oxidativo , Fagócitos/microbiologia , RNA Mensageiro/química , Ribossomos/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Virulência
11.
Nucleic Acids Res ; 42(7): 4682-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24489123

RESUMO

RydC pseudoknot aided by Hfq is a dynamic regulatory module. We report that RydC reduces expression of curli-specific gene D transcription factor required for adhesion and biofilm production in enterobacteria. During curli formation, csgD messenger RNA (mRNA) synthesis increases when endogenous levels of RydC are lacking. In Escherichia coli and Salmonella enterica, stimulation of RydC expression also reduces biofilm formation by impairing curli synthesis. Inducing RydC early on in growth lowers CsgA, -B and -D protein and mRNA levels. RydC's 5'-domain interacts with csgD mRNA translation initiation signals to prevent initiation. Translation inhibition occurs by an antisense mechanism, blocking the translation initiation signals through pairing, and that mechanism is facilitated by Hfq. Although Hfq represses csgD mRNA translation without a small RNA (sRNA), it forms a ternary complex with RydC and facilitates pseudoknot unfolding to interact with the csgD mRNA translation initiation signals. RydC action implies Hfq-assisted unfolding and mRNA rearrangements, but once the pseudoknot is disrupted, Hfq is unnecessary for regulation. RydC is the sixth sRNA that negatively controls CsgD synthesis. Hfq induces structural changes in the mRNA domains targeted by these six sRNAs. What we describe is an ingenious process whereby pseudoknot opening is orchestrated by a chaperone to allow RNA control of gene expression.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Pequeno RNA não Traduzido/metabolismo , Salmonella enterica/genética , Regiões 5' não Traduzidas , Aderência Bacteriana , Sítios de Ligação , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/química , Salmonella enterica/metabolismo , Salmonella enterica/fisiologia , Transativadores/genética , Transativadores/metabolismo
12.
Nucleic Acids Res ; 42(8): 4847-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24510101

RESUMO

In pathogens, the accurate programming of virulence gene expression is essential for infection. It is achieved by sophisticated arrays of regulatory proteins and ribonucleic acids (sRNAs), but in many cases their contributions and connections are not yet known. Based on genetic, biochemical and structural evidence, we report that the expression pattern of a Staphylococcus aureus host immune evasion protein is enabled by the collaborative actions of RNAIII and small pathogenicity island RNA D (SprD). Their combined expression profiles during bacterial growth permit early and transient synthesis of Sbi to avoid host immune responses. Together, these two sRNAs use antisense mechanisms to monitor Sbi expression at the translational level. Deletion analysis combined with structural analysis of RNAIII in complex with its novel messenger RNA (mRNA) target indicate that three distant RNAIII domains interact with distinct sites of the sbi mRNA and that two locations are deep in the sbi coding region. Through distinct domains, RNAIII lowers production of two proteins required for avoiding innate host immunity, staphylococcal protein A and Sbi. Toeprints and in vivo mutational analysis reveal a novel regulatory module within RNAIII essential for attenuation of Sbi translation. The sophisticated translational control of mRNA by two differentially expressed sRNAs ensures supervision of host immune escape by a major pathogen.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Regulação Bacteriana da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , RNA Bacteriano/metabolismo , Staphylococcus aureus/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Ribossomos/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Org Biomol Chem ; 10(24): 4720-30, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22585188

RESUMO

A series of neamine derivatives were prepared from the cyclic carbonate and sulfate of 1,3,2',6'-tetraazido-3',4',-di-O-acetylneamine. Ring opening reactions with diversely substituted amines result in the formation of the corresponding carbamates or sulfonic acids with good overall yields. The antibacterial activities of the synthesized products against E. coli (DH5α) and S. aureus (RN4220) were evaluated. With isolated single regioisomers, the preponderant effect of the 5-positions of the carbamate substituent on the neamine core was demonstrated.


Assuntos
Antibacterianos/síntese química , Framicetina/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Framicetina/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
14.
J Biol Chem ; 280(9): 7901-8, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15618228

RESUMO

A small noncoding bacterial ribonucleic acid of 62-64 nucleotides, RydC, was identified in the genomes of Escherichia coli, Salmonella, and Shigella. In vivo, RydC binds to the RNA-binding protein Hfq, and it is unstable when Hfq is absent. Mobility assays reveal that complex formation between RydC and Hfq is specific, with an apparent binding constant of approximately 300 nm. Sequence alignments combined with structural probing demonstrate that RydC folds as a pseudoknot. Hfq binds the loops crossing the deep and shallow grooves of the pseudoknotted RNA and reorganizes its overall conformation. An interaction with a polycistronic mRNA, yejABEF, which encodes a putative ABC transporter, was detected by affinity purification of immobilized RNA-Hfq complexes. In vivo, the yejABEF operon is expressed on minimal medium. Remarkably, its expression is reduced when RydC is absent, and the operon is degraded when RydC expression is stimulated. This observation correlates with the growth defects associated with a stimulation of its expression in vivo, generating a thermosensitive phenotype that affects growth on minimal media supplemented with glycerol, maltose, or ribose. We conclude that RydC regulates the yejABEF-encoded ABC permease at the mRNA level. This small RNA may contribute to optimal adaptation of some Enterobacteria to environmental conditions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas de Bactérias/química , Proteínas de Escherichia coli/fisiologia , Fator Proteico 1 do Hospedeiro/fisiologia , RNA não Traduzido/química , RNA não Traduzido/fisiologia , RNA/química , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Bases , Transporte Biológico , Northern Blotting , Carbono/química , Proliferação de Células , Cromossomos/ultraestrutura , Primers do DNA/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicerol/química , Fator Proteico 1 do Hospedeiro/metabolismo , Maltose/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fenótipo , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribose/química , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
15.
J Mol Biol ; 331(2): 457-71, 2003 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12888352

RESUMO

Transfer-messenger RNA (tmRNA, 10Sa RNA or ssrA) acts to rescue stalled bacterial ribosomes while encoding a peptide tag added trans-translationally to the nascent peptide, targeting it for proteolysis. The understanding at molecular level of this ubiquitous quality control system in eubacteria requires structural information. Here, we describe the purification and structural analysis of a functional fragment of both Aquifex aeolicus and Escherichia coli tmRNA, recapitulating their tRNA-like domain, which were expressed in vivo from synthetic genes. Both recombinant RNA are correctly processed at both 5' and 3' ends and are produced in quantities suitable for structural analysis by NMR and/or X-ray crystallography. The sequence and solution structure of the tRNA-like domains were analysed by various methods including structural mapping with chemical and enzymatic probes and 2D NMR spectroscopy. The minimalist RNAs contain two post-transcriptional base modifications, 5-methyluridine and pseudouridine, as the full-length tmRNA. Both RNAs fold into three stems, a D-analogue, a T-loop and a GAAA tetra-loop. 2D NMR analysis of the imino proton resonances of both RNAs allowed the assignment of the three stems and of a number of tertiary interactions. It shows the existence of interactions between the TPsiC-loop and the D-analogue, exhibiting a number of similarities and also differences with the canonical tRNA fold, indicating that RNA tertiary interactions can be modulated according to the sequence and secondary structure contexts. Furthermore, the E.coli minimalist RNA is aminoacylatable with alanine with a catalytic efficiency an order of magnitude higher than that for full-length tmRNA.


Assuntos
Bactérias/metabolismo , Escherichia coli/metabolismo , RNA Mensageiro/química , RNA de Transferência/química , Alanina/química , Sequência de Bases , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes/química , Relação Estrutura-Atividade
16.
J Biol Chem ; 278(17): 14788-97, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12588865

RESUMO

Transfer messenger RNA (tmRNA) directs the modification of proteins of which the biosynthesis has stalled or has been interrupted. Here, we report that aminoglycosides can interfere with this quality control system in bacteria, termed trans-translation. Neomycin B is the strongest inhibitor of tmRNA aminoacylation with alanine (K(i) value of approximately 35 micro m), an essential step during trans-translation. The binding sites of neomycin B do not overlap with the identity determinants for alanylation, but the aminoglycoside perturbs the conformation of the acceptor stem that contains the aminoacylation signals. Aminoglycosides reduce the conformational freedom of the transfer RNA-like domain of tmRNA. Additional contacts between aminoglycosides and tmRNA are within the tag reading frame, probably also disturbing reprogramming of the stalled ribosomes prior protein tagging. Aminoglycosides impair tmRNA aminoacylation in the presence of all of the transfer RNAs from Escherichia coli, small protein B, and elongation factor Tu, but when both proteins are present, the inhibition constant is 1 order of magnitude higher. SmpB and elongation factor Tu have RNA chaperone activities, ensuring that tmRNA adopts an optimal conformation during aminoacylation.


Assuntos
Antibacterianos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Bacteriano/antagonistas & inibidores , Acilação/efeitos dos fármacos , Alanina/metabolismo , Alanina-tRNA Ligase/metabolismo , Aminoglicosídeos , Escherichia coli/genética , Cinética , Magnésio/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA de Transferência de Alanina/metabolismo
17.
Biochimie ; 84(8): 723-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12457560

RESUMO

tmRNA (10Sa RNA, ssrA) acts to rescue stalled bacterial ribosomes while encoding a peptide tag added trans-translationally to the nascent peptide, targeting it for proteolysis. Ribosomal protein S1 is required for tmRNA binding to isolated and poly U-programmed ribosomes. Mobility assays on native gels indicate that the binding curves of both recombinant and purified proteins S1 from E. coli is biphasic with apparent binding constants of approximately 90 and approximately 300 nM, respectively, suggesting that more than one protein interacts with tmRNA. Structural probing of native tmRNA in the presence and absence of the purified protein suggest that when S1 binds, tmRNA undergoes a significant conformational change. In the presence of the protein, nucleotides from tmRNA with enhanced (H2, H3, PK1, PK2, PK4, in and around the first triplet to be translated), or decreased (H5 and PK2), reactivity towards a probe specific for RNA single-strands are scattered throughout the molecule, with the exception of the tRNA-like domain that may be dispensable for the interaction. Converging experimental evidence suggests that ribosomal protein S1 binds to pseudoknot PK2. Previous structural studies of tmRNA in solution have revealed several discrepancies between the probing data and the phylogeny, and most of these are reconciled when analyzing tmRNA structure in complex with the protein(s). Ribosomal protein(s) S1 is proposed to set tmRNA in the mRNA mode, relieving strains that may develop when translating a looped mRNA.


Assuntos
RNA Bacteriano/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/farmacologia , Autorradiografia , Sequência de Bases , Códon/genética , Reagentes de Ligações Cruzadas/farmacologia , Eletroforese em Gel de Poliacrilamida/métodos , Escherichia coli/metabolismo , Genes Bacterianos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Sondas de Oligonucleotídeos , Filogenia , Ligação Proteica , Biossíntese de Proteínas , RNA Bacteriano/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Ribossômicas/química , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA