Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Toxicon ; 246: 107797, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38852745

RESUMO

The Brazilian Amazon is home to a rich fauna of scorpion species of medical importance, some of them still poorly characterized regarding their biological actions and range of clinical symptoms after envenoming. The Amazonian scorpion species Tityus strandi and Tityus dinizi constitute some of the scorpions in this group, with few studies in the literature regarding their systemic repercussions. In the present study, we characterized the clinical, inflammatory, and histopathological manifestations of T. strandi and T. dinizi envenoming in a murine model using Balb/c mice. The results show a robust clinical response based on clinical score, hyperglycemia, leukocytosis, increased cytokines, and histopathological changes in the kidneys and lungs. Tityus strandi envenomed mice presented more prominent clinical manifestations when compared to Tityus dinizi, pointing to the relevance of this species in the medical scenario, with both species inducing hyperglycemia, leukocytosis, increased cytokine production in the peritoneal lavage, increased inflammatory infiltrate in the lungs, and acute tubular necrosis after T. strandi envenoming. The results presented in this research can help to understand the systemic manifestations of scorpion accidents in humans caused by the target species of the study and point out therapeutic strategies in cases of scorpionism in remote regions of the Amazon.


Assuntos
Camundongos Endogâmicos BALB C , Picadas de Escorpião , Venenos de Escorpião , Escorpiões , Animais , Venenos de Escorpião/toxicidade , Camundongos , Modelos Animais de Doenças , Citocinas/metabolismo , Brasil , Leucocitose/induzido quimicamente , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino , Rim/patologia , Rim/efeitos dos fármacos , Feminino
2.
Toxicon ; 243: 107746, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38704124

RESUMO

Our study presents the anticancer potential of crotamine from Crotalus durissus terrificus in human prostate cancer cell line DU-145. Crotamine isolation was conducted through RP-FPLC, its molecular mass analyzed by MALDI-TOF was 4881.4 kDa, and N-terminal sequencing confirmed crotamine identity. Crotamine demonstrated no toxicity and did not inhibit migration in HUVEC cells. Although no cell death occurred in DU-145 cells, crotamine inhibited their migration. Thus, crotamine presented potential to be a prototype of anticancer drug.


Assuntos
Antineoplásicos , Movimento Celular , Venenos de Crotalídeos , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Antineoplásicos/farmacologia , Crotalus , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Animais
3.
Biochimie ; 220: 144-166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38176606

RESUMO

Animal venoms are a rich and complex source of components, including peptides (such as neurotoxins, anionic peptides and hypotensins), lipids, proteins (such as proteases, hyaluronidases and phospholipases) and inorganic compounds, which affect all biological systems of the envenoming victim. Their action may result in a wide range of clinical manifestations, including tachy/bradycardia, hyper/hypotension, disorders in blood coagulation, pain, edema, inflammation, fever, muscle paralysis, coma and even death. Scorpions are one of the most studied venomous animals in the world and interesting bioactive molecules have been isolated and identified from their venoms over the years. Tityus spp. are among the scorpions with high number of accidents reported in the Americas, especially in Brazil. Their venoms have demonstrated interesting results in the search for novel agents with antimicrobial, anti-viral, anti-parasitic, hypotensive, immunomodulation, anti-insect, antitumor and/or antinociceptive activities. Furthermore, other recent activities still under investigation include drug delivery action, design of anti-epileptic drugs, investigation of sodium channel function, treatment of erectile disfunction and priapism, improvement of scorpion antivenom and chelating molecules activity. In this scenario, this paper focuses on reviewing advances on Tityus venom components mainly through the modern omics technologies as well as addressing potential therapeutic agents from their venoms and highlighting this abundant source of pharmacologically active molecules with biotechnological application.


Assuntos
Venenos de Escorpião , Escorpiões , Animais , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Humanos
4.
Toxins (Basel) ; 15(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37624240

RESUMO

A pioneering study regarding the isolation, biochemical evaluation, functional assays and first PEGylation report of a novel vascular endothelial growth factor from Crotalus durissus terrificus venom (CdtVEGF and PEG-CdtVEGF). CdtVEGF was isolated from crude venom using two different chromatographic steps, representing 2% of soluble venom proteins. Its primary sequence was determined using mass spectrometry analysis, and the molecule demonstrated no affinity to heparin. The Brazilian crotalid antivenom recognized CdtVEGF. Both native and PEGylated CdtVEGF were able to induce new vessel formation and migration, and to increase the metabolic activity of human umbilical endothelial vascular cells (HUVEC), resulting in better wound closure (~50% within 12 h) using the native form. CdtVEGF induced leukocyte recruitment to the peritoneal cavity in mice, with a predominance of neutrophil influx followed by lymphocytes, demonstrating the ability to activate the immune system. The molecule also induced a dose-dependent increase in vascular permeability, and PEG-CdtVEGF showed less in vivo inflammatory activity than CdtVEGF. By unraveling the intricate properties of minor components of snake venom like svVEGF, this study illuminates the indispensable significance of exploring these molecular tools to unveil physiological and pathological processes, elucidates the mechanisms of snakebite envenomings, and could possibly be used to design a therapeutic drug.


Assuntos
Venenos de Crotalídeos , Fator A de Crescimento do Endotélio Vascular , Humanos , Animais , Camundongos , Brasil , Permeabilidade Capilar , Polietilenoglicóis
5.
Toxicon ; 230: 107171, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37211059

RESUMO

There are several scorpion species of medical relevance around the world. Some of them are well characterized by their toxins and clinical outcomes. Brazilian Amazon has a great amount of these arthropods that have an impact in the scorpionism events specifically in this region of Brazil. Recently, several studies pointed out the immune system activation during scorpion envenouming as an important facet of scorpionism, inducing a sepsis-like state that culminates in clinical severity and death. In this work, we characterized the macrophage response of three species of clinical relevance in Brazilian Amazon: Tityus silvestris, T. metuendus and T. obscurus and one specie with no toxic effects to humans, Brotheas amazonicus. All the four species analyzed were able to induce pro- and anti-inflammatory cytokine production in a J774.1 murine macrophage model. This activation was dependent on TLR2/TLR4/MyD88 activation and abolished by TLRs antagonists. These results suggest that the venoms of the four species analyzed were able to induce macrophage response in agreement to the well-established immune activation by T. serrulatus venom. Our findings provide new insights into the clinical repercussions of scorpionism of uncharacterized species and point to new biotechnological applications of these venoms and possible supportive therapies in scorpionism.


Assuntos
Picadas de Escorpião , Venenos de Escorpião , Humanos , Camundongos , Animais , Brasil , Venenos de Escorpião/toxicidade , Escorpiões , Macrófagos
6.
Toxicon ; 228: 107125, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054995

RESUMO

Tityus obscurus has caused mild, moderate and severe accidents of medical relevance in the eastern Brazilian Amazon and French Guiana. Tityus obscurus has sexual dimorphism although males and females have uniform black coloration. In the Amazon, one of the habitats of this scorpion is seasonally flooded forests (igapós and várzeas). However, most stings occur in terra firme forest areas (non-flooded region), where most rural communities are located. Adults and children stung by T. obscurus may experience an "electric shock" sensation for more than 30 h after the sting. Our data shows that people inhabiting remote forest areas, including rubber tappers, fishermen and indigenous people, with no access to anti-scorpion serum, use parts of native plants, such as seeds and leaves, against pain and vomiting caused by scorpion stings. Although there is a technical effort to produce and distribute antivenoms in the Amazon, many cases of scorpion stings are geographically unpredictable in this region, due to the lack of detailed knowledge of the natural distribution of these animals. In this manuscript, we compile information on the natural history of T. obscurus and the impact of its envenoming on human health. We identify the natural sites that host this scorpion in the Amazon, in order to warn about the risk of human envenoming. The use of specific antivenom serum is the recommended treatment for accidents involving venomous animals. However, atypical symptoms not neutralized by the available commercial antivenom are reported in the Amazon region. Facing this scenario, we present some challenges to the study of venomous animals in the Amazon rainforest and possible experimental bottlenecks and perspectives for establishing a method aimed at producing an efficient antivenom.


Assuntos
Picadas de Escorpião , Venenos de Escorpião , Masculino , Criança , Adulto , Animais , Feminino , Humanos , Antivenenos/uso terapêutico , Escorpiões , Venenos de Escorpião/toxicidade , Biologia
7.
PLoS Negl Trop Dis ; 17(1): e0011057, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716327

RESUMO

Scorpion sting envenomations (SSE) are feared by the intense pain that they produce in victims. Pain from SSE is triggered mainly by the presence of neurotoxins in the scorpion venom that modulates voltage-gated ion channels. In Brazil, SSE is mostly caused by Tityus serrulatus, popularly known as yellow scorpion. Here, we evaluated experimental spontaneous nociception induced by T. serrulatus venom as well as its isolated neurotoxins Ts1, Ts5, Ts6, Ts8, and Ts19 frag II, evidencing different degrees of pain behavior in mice. In addition, we developed a mice-derived polyclonal antibody targeting Ts5 able to neutralize the effect of this neurotoxin, showing that Ts5 presents epitopes capable of activating the immune response, which decreased considerably the nociception produced by the whole venom. This is the pioneer study to explore nociception using different classes of T. serrulatus neurotoxins on nociception (α-NaTx, ß-NaTx, α-KTx, and ß-KTx), targeting potassium and sodium voltage-gated channels, besides demonstrating that Ts5 plays an important role in the scorpion sting induced-pain.


Assuntos
Picadas de Escorpião , Venenos de Escorpião , Camundongos , Animais , Neurotoxinas/toxicidade , Nociceptividade , Peçonhas , Escorpiões , Dor/induzido quimicamente , Venenos de Escorpião/toxicidade
8.
Toxicon ; 217: 121-130, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998712

RESUMO

Phosphodiesterases (PDEs) constitute an enzyme group able to hydrolyze nucleic acids as well as some second messengers. Due to this ability and their expression in several human tissues and organs, PDEs can control a gamut of physiological processes. They are also involved in some pathological conditions, such as Alzheimer's disease and erectile dysfunction. PDEs are also expressed in snake venom glands, being called snake venoms phosphodiesterases, or simply svPDEs. The occurrence of these enzymes has already been reported in crotalid, elapid and viperid venoms, such as Crotalus, Naja and Trimeresurus, respectively, but not all of them have been characterized concerning their structure, activity and function. In this review, we are addressing general characteristics of svPDEs, in addition to their structural, biochemical and functional characteristics, and we also report some potential applications of svPDEs.


Assuntos
Venenos de Crotalídeos , Trimeresurus , Animais , Venenos de Crotalídeos/química , Crotalus/metabolismo , Humanos , Masculino , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/toxicidade , Venenos de Serpentes/toxicidade , Trimeresurus/metabolismo
9.
Biochimie ; 200: 68-78, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35613667

RESUMO

Vascular endothelial growth factors (VEGFs) are crucial molecules involved in the modulation of angiogenesis. Snake venom-derived VEGFs (svVEGFs) are known to contribute significantly to the envenoming due to their capacity of increasing vascular permeability. In our work, we isolated and analyzed the biochemical and functional properties of the VEGF from Crotalus durissus collilineatus venom (CdcVEGF). The venom was fractionated by reversed phase chromatography on FPLC system (Fast Protein Liquid Chromatography) and the eluted fractions were submitted to an ELISA assay using an anti-VEGF-F antibody, for identification of svVEGF. Positive fractions for svVEGF were submitted to SDS-PAGE and to an anion exchange chromatography to isolate the molecule. The subfractions were analyzed by ELISA and SDS-PAGE and six of them presented svVEGFs, named CdcVEGF1 (Q23-3), CdcVEGF2 (Q24-3), CdcVEGF3 (Q24-4), CdcVEGF4 (Q25-3), CdcVEGF5 (Q25-4), and CdcVEGF6 (Q25-5). Their structural characterization was accomplished by mass spectrometry analysis using MALDI-TOF to determine their molecular masses and UPLC-ESI-QTOF to determine their amino acid sequence. Interestingly, all isolated CdcVEGFs induced angiogenesis on HUVEC cells through tube formation on Matrigel when compared to culture medium (negative control). Moreover, CdcVEGF2 and CdcVEGF3 also induced a significant increase in tube formation when compared to the positive control (basic fibroblast growth factor - bFGF). Additionally, crotalid antivenom produced by the Instituto Butantan was able to recognize CdcVEGFs, demonstrating to be immunogenic. This study demonstrates that snake venom cocktail can reveal novel and important molecules, which are potential molecular tools to study diverse biological processes, such as angiogenesis.


Assuntos
Venenos de Crotalídeos , Crotalus , Animais , Venenos de Crotalídeos/química , Venenos de Serpentes , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
10.
Toxicon ; 213: 27-42, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405203

RESUMO

Bothrops leucurus is considered as a snake of medical interest in the State of Bahia, Brazil. However, so far, there are no studies that provide a refined mapping of the composition of this venom. The aim of this work was to better understand the protein composition of B. leucurus snake venom and to isolate and biologically characterize the most abundant toxin, a basic PLA2-like. Shotgun proteomics approach identified 137 protein hits in B. leucurus venom subdivided into 19 protein families. The new basic PLA2-like toxin identified was denominated Bleu-PLA2-like, it and other proteoforms represents about 25% of the total proteins in the venom of B. leucurus and induces myotoxicity, inflammation and muscle damage. Immunoreactivity assays demonstrated that B. leucurus venom is moderately recognized by bothropic and crotalic antivenoms, and on the other hand, Bleu-PLA2-like and its proteoforms are poorly recognized. Our findings open doors for future studies in order to assess the systemic effects caused by this snake venom in order to better understand the toxinological implications of this envenomation and, consequently, to assist in the clinical treatment of victims.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Antivenenos/farmacologia , Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Venenos de Crotalídeos/toxicidade , Fosfolipases A2/metabolismo , Venenos de Serpentes/metabolismo , Venenos de Serpentes/toxicidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-34589120

RESUMO

Scorpionism is a relevant medical condition in Brazil. It is responsible for most accidents involving venomous animals in the country, which leads to severe symptoms that can evolve to death. In recent years, an increase of almost 50% in the incidence of scorpionism has been observed in the Northern Region, where the highest severity of envenoming has been notified since the beginning of the 21st century. This review aims to provide an in-depth assessment of public data and reports on symptoms and epidemiology of envenoming, ecological aspects of scorpions, and characterization of venoms and toxins to access the gaps that need to be filled in the knowledge of the scorpion species of medical importance from the Brazilian Amazon. A systematic search using the string words "Amazon" and "scorpion" was performed on 11 databases. No restriction on date, language or status of the publication was applied. Reports not related to the Brazilian Amazon were excluded. Therefore, 88 studies remained. It is shown that populations of scorpions of medical importance, even of the same species, may present significant toxic variations peculiar to some regions in the Brazilian Amazon, and commercial scorpion antivenoms were not able to shorten the intensity and duration of neurological manifestations in patients stung by T. silvestris, T. apiacas or T. obscurus. It is also highlighted that the toxins responsible for triggering these alterations have not been elucidated yet and this is a fruitful field for the development of more efficient antivenoms. Furthermore, the geographic distribution of scorpions of the genus Tityus in the Brazilian Amazon was revised and updated. The cumulative and detailed information provided in this review may help physicians and scientists interested in scorpionism in the Brazilian Amazon.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33915386

RESUMO

C-type lectin-like proteins found in snake venom, known as snaclecs, have important effects on hemostasis through targeting membrane receptors, coagulation factors and other hemostatic proteins. Here, we present the isolation and functional characterization of a snaclec isolated from Bothrops alternatus venom, designated as Baltetin. We purified the protein in three chromatographic steps (anion-exchange, affinity and reversed-phase chromatography). Baltetin is a dimeric snaclec that is approximately 15 and 25 kDa under reducing and non-reducing conditions, respectively, as estimated by SDS-PAGE. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry and Edman degradation sequencing revealed that Baltetin is a heterodimer. The first 40 amino acid residues of the N-terminal region of Baltetin subunits share a high degree of sequence identity with other snaclecs. Baltetin had a specific, dose-dependent inhibitory effect on epinephrine-induced platelet aggregation in human platelet-rich plasma, inhibiting up to 69% of platelet aggregation. Analysis of the infrared spectra suggested that the interaction between Baltetin and platelets can be attributed to the formation of hydrogen bonds between the PO32- groups in the protein and PO2- groups in the platelet membrane. This interaction may lead to membrane lipid peroxidation, which prevents epinephrine from binding to its receptor. The present work suggests that Baltetin, a new C-type lectin-like protein isolated from B. alternatus venom, is the first snaclec to inhibit epinephrine-induced platelet aggregation. This could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.

13.
Int J Biol Macromol ; 178: 180-192, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636276

RESUMO

This study reports the isolation, structural, biochemical, and functional characterization of a novel phosphodiesterase from Crotalus durissus collilineatus venom (CdcPDE). CdcPDE was successfully isolated from whole venom using three chromatographic steps and represented 0.7% of total protein content. CdcPDE was inhibited by EDTA and reducing agents, demonstrating that metal ions and disulfide bonds are necessary for its enzymatic activity. The highest enzymatic activity was observed at pH 8-8.5 and 37 °C. Kinetic parameters indicated a higher affinity for the substrate bis(p-nitrophenyl) phosphate compared to others snake venom PDEs. Its structural characterization was done by the determination of the protein primary sequence by Edman degradation and mass spectrometry, and completed by the building of molecular and docking-based models. Functional in vitro assays showed that CdcPDE is capable of inhibiting platelet aggregation induced by adenosine diphosphate in a dose-dependent manner and demonstrated that CdcPDE is cytotoxic to human keratinocytes. CdcPDE was recognized by the crotalid antivenom produced by the Instituto Butantan. These findings demonstrate that the study of snake venom toxins can reveal new molecules that may be relevant in cases of snakebite envenoming, and that can be used as molecular tools to study pathophysiological processes due to their specific biological activities.


Assuntos
Venenos de Crotalídeos , Queratinócitos/efeitos dos fármacos , Diester Fosfórico Hidrolases , Animais , Células Cultivadas , Venenos de Crotalídeos/química , Crotalus , Humanos , Cinética , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/isolamento & purificação , Diester Fosfórico Hidrolases/toxicidade , Especificidade por Substrato
14.
J. venom. anim. toxins incl. trop. dis ; 27: e20210012, 2021. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1340185

RESUMO

Scorpionism is a relevant medical condition in Brazil. It is responsible for most accidents involving venomous animals in the country, which leads to severe symptoms that can evolve to death. In recent years, an increase of almost 50% in the incidence of scorpionism has been observed in the Northern Region, where the highest severity of envenoming has been notified since the beginning of the 21st century. This review aims to provide an in-depth assessment of public data and reports on symptoms and epidemiology of envenoming, ecological aspects of scorpions, and characterization of venoms and toxins to access the gaps that need to be filled in the knowledge of the scorpion species of medical importance from the Brazilian Amazon. A systematic search using the string words "Amazon" and "scorpion" was performed on 11 databases. No restriction on date, language or status of the publication was applied. Reports not related to the Brazilian Amazon were excluded. Therefore, 88 studies remained. It is shown that populations of scorpions of medical importance, even of the same species, may present significant toxic variations peculiar to some regions in the Brazilian Amazon, and commercial scorpion antivenoms were not able to shorten the intensity and duration of neurological manifestations in patients stung by T. silvestris, T. apiacas or T. obscurus. It is also highlighted that the toxins responsible for triggering these alterations have not been elucidated yet and this is a fruitful field for the development of more efficient antivenoms. Furthermore, the geographic distribution of scorpions of the genus Tityus in the Brazilian Amazon was revised and updated. The cumulative and detailed information provided in this review may help physicians and scientists interested in scorpionism in the Brazilian Amazon.(AU)


Assuntos
Animais , Escorpiões/classificação , Doenças Endêmicas , Picadas de Escorpião , Animais Peçonhentos
15.
Front Immunol ; 11: 2011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973807

RESUMO

Scorpionism is responsible for most accidents involving venomous animals in Brazil, which leads to severe symptoms that can evolve to death. Scorpion venoms consist of complexes cocktails, including peptides, proteins, and non-protein compounds, making separation and purification procedures extremely difficult and time-consuming. Scorpion toxins target different biological systems and can be used in basic science, for clinical, and biotechnological applications. This study is the first to explore the venom content of the unexplored scorpion species Rhopalurus crassicauda, which inhabits exclusively the northernmost state of Brazil, named Roraima, and southern region of Guyana. Here, we pioneer the fractionation of the R. crassicauda venom and isolated and characterized a novel scorpion beta-neurotoxin, designated Rc1, and a monomeric hyaluronidase. R. crassicauda venom and Rc1 (6,882 Da) demonstrated pro-inflammatory activities in vitro and a nociceptive response in vivo. Moreover, Rc1 toxin showed specificity for activating Nav1.4, Nav1.6, and BgNav1 voltage-gated ion channels. This study also represents a new perspective for the treatment of envenomings in Roraima, since the Brazilian scorpion and arachnid antivenoms were not able to recognize R. crassicauda venom and its fractions (with exception of hyaluronidase). Our work provides useful insights for the first understanding of the painful sting and pro-inflammatory effects associated with R. crassicauda envenomings.


Assuntos
Hialuronoglucosaminidase/metabolismo , Mediadores da Inflamação/metabolismo , Peptídeos/metabolismo , Picadas de Escorpião/terapia , Venenos de Escorpião/metabolismo , Animais , Antivenenos/imunologia , Antivenenos/uso terapêutico , Linhagem Celular , Cromatografia Líquida , Reações Cruzadas , Humanos , Hialuronoglucosaminidase/isolamento & purificação , Mediadores da Inflamação/isolamento & purificação , Canais Iônicos/metabolismo , Camundongos , Peptídeos/isolamento & purificação , Venenos de Escorpião/isolamento & purificação , Escorpiões , Análise de Sequência de Proteína
16.
Front Pharmacol ; 11: 1132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848750

RESUMO

Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.

17.
Toxins (Basel) ; 12(6)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549266

RESUMO

The biological activity of Rhinella icterica parotoid secretion (RIPS) and some of its chromatographic fractions (RI18, RI19, RI23, and RI24) was evaluated in the current study. Mass spectrometry of these fractions indicated the presence of sarmentogenin, argentinogenin, (5ß,12ß)-12,14-dihydroxy-11-oxobufa-3,20,22-trienolide, marinobufagin, bufogenin B, 11α,19-dihydroxy-telocinobufagin, bufotalin, monohydroxylbufotalin, 19-oxo-cinobufagin, 3α,12ß,25,26-tetrahydroxy-7-oxo-5ß-cholestane-26-O-sulfate, and cinobufagin-3-hemisuberate that were identified as alkaloid and steroid compounds, in addition to marinoic acid and N-methyl-5-hydroxy-tryptamine. In chick brain slices, all fractions caused a slight decrease in cell viability, as also seen with the highest concentration of RIPS tested. In chick biventer cervicis neuromuscular preparations, RIPS and all four fractions significantly inhibited junctional acetylcholinesterase (AChE) activity. In this preparation, only fraction RI23 completely mimicked the pharmacological profile of RIPS, which included a transient facilitation in the amplitude of muscle twitches followed by progressive and complete neuromuscular blockade. Mass spectrometric analysis showed that RI23 consisted predominantly of bufogenins, a class of steroidal compounds known for their cardiotonic activity mediated by a digoxin- or ouabain-like action and the blockade of voltage-dependent L-type calcium channels. These findings indicate that the pharmacological activities of RI23 (and RIPS) are probably mediated by: (1) inhibition of AChE activity that increases the junctional content of Ach; (2) inhibition of neuronal Na+/K+-ATPase, leading to facilitation followed by neuromuscular blockade; and (3) blockade of voltage-dependent Ca2+ channels, leading to stabilization of the motor endplate membrane.


Assuntos
Bufanolídeos/toxicidade , Bufonidae , Neurotoxinas/toxicidade , Glândula Parótida/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Bufanolídeos/isolamento & purificação , Bloqueadores dos Canais de Cálcio/isolamento & purificação , Bloqueadores dos Canais de Cálcio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/toxicidade , Relação Dose-Resposta a Droga , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Neurotoxinas/isolamento & purificação , Via Secretória , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo
18.
Biomedicines ; 8(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408604

RESUMO

Scorpion venom may cause severe medical complications and untimely death if injected into the human body. Neurotoxins are the main components of scorpion venom that are known to be responsible for the pathological manifestations of envenoming. Besides neurotoxins, a wide range of other bioactive molecules can be found in scorpion venoms. Advances in separation, characterization, and biotechnological approaches have enabled not only the development of more effective treatments against scorpion envenomings, but have also led to the discovery of several scorpion venom peptides with interesting therapeutic properties. Thus, scorpion venom may not only be a medical threat to human health, but could prove to be a valuable source of bioactive molecules that may serve as leads for the development of new therapies against current and emerging diseases. This review presents both the detrimental and beneficial properties of scorpion venom toxins and discusses the newest advances within the development of novel therapies against scorpion envenoming and the therapeutic perspectives for scorpion toxins in drug discovery.

19.
Toxins (Basel) ; 12(4)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283690

RESUMO

Antibiotics are often administered with antivenom following snakebite envenomings in order to avoid secondary bacterial infections. However, to this date, no studies have evaluated whether antibiotics may have undesirable potentiating effects on snake venom. Herein, we demonstrate that four commonly used antibiotics affect the enzymatic activities of proteolytic snake venom toxins in two different in vitro assays. Similar findings in vivo could have clinical implications for snakebite management and require further examination.


Assuntos
Antibacterianos/farmacologia , Fibrinogênio/metabolismo , Fibrinólise/efeitos dos fármacos , Serina Proteases/metabolismo , Venenos de Serpentes/enzimologia , Ampicilina/farmacologia , Cloxacilina/farmacologia , Canamicina/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-31131000

RESUMO

BACKGROUND: Lachesis muta rhombeata is one of the venomous snakes of medical importance in Brazil whose envenoming is characterized by local and systemic effects which may produce even shock and death. Its venom is mainly comprised of serine and metalloproteinases, phospholipases A2 and bradykinin-potentiating peptides. Based on a previously reported fractionation of L. m. rhombeata venom (LmrV), we decided to perform a subproteome analysis of its major fraction and investigated a novel component present in this venom. METHODS: LmrV was fractionated through molecular exclusion chromatography and the main fraction (S5) was submitted to fibrinogenolytic activity assay and fractionated by reversed-phase chromatography. The N-terminal sequences of the subfractions eluted from reversed-phase chromatography were determined by automated Edman degradation. Enzyme activity of LmrSP-4 was evaluated upon chromogenic substrates for thrombin (S-2238), plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) and upon fibrinogen. All assays were carried out in the presence or absence of possible inhibitors. The fluorescence resonance energy transfer substrate Abz-KLRSSKQ-EDDnp was used to determine the optimal conditions for LmrSP-4 activity. Molecular mass of LmrSP-4 was determined by MALDI-TOF and digested peptides after trypsin and Glu-C treatments were analyzed by high resolution MS/MS using different fragmentation modes. RESULTS: Fraction S5 showed strong proteolytic activity upon fibrinogen. Its fractionation by reversed-phase chromatography gave rise to 6 main fractions (S5C1-S5C6). S5C1-S5C5 fractions correspond to serine proteinases whereas S5C6 represents a C-type lectin. S5C4 (named LmrSP-4) had its N-terminal determined by Edman degradation up to the 53rd amino acid residue and was chosen for characterization studies. LmrSP-4 is a fibrinogenolytic serine proteinase with high activity against S-2302, being inhibited by PMSF and benzamidine, but not by 1,10-phenantroline. In addition, this enzyme exhibited maximum activity within the pH range from neutral to basic and between 40 and 50 °C. About 68% of the LmrSP-4 primary structure was covered, and its molecular mass is 28,190 Da. CONCLUSIONS: Novel serine proteinase isoforms and a lectin were identified in LmrV. Additionally, a kallikrein-like serine proteinase that might be useful as molecular tool for investigating bradykinin-involving process was isolated and partially characterized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA