Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Eng Phys ; 77: 1-9, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32007361

RESUMO

Pulmonary hypertension (PH) is a progressive disease affecting approximately 10-52 cases per million, with a higher incidence in women, and with a high mortality associated with right ventricle (RV) failure. In this work, we explore the relationship between hemodynamic indices, calculated from in silico models of the pulmonary circulation, and clinical attributes of RV workload and pathological traits. Thirty-four patient-specific pulmonary arterial tree geometries were reconstructed from computed tomography angiography images and used for volume meshing for subsequent computational fluid dynamics (CFD) simulations. Data obtained from the CFD simulations were post-processed resulting in hemodynamic indices representative of the blood flow dynamics. A retrospective review of medical records was performed to collect the clinical variables measured or calculated from standard hospital examinations. Statistical analyses and canonical correlation analysis (CCA) were performed for the clinical variables and hemodynamic indices. Systolic pulmonary artery pressure (sPAP), diastolic pulmonary artery pressure (dPAP), cardiac output (CO), and stroke volume (SV) were moderately correlated with spatially averaged wall shear stress (0.60 ≤ R2 ≤ 0.66; p < 0.05). Similarly, the CCA revealed a linear and strong relationship (ρ = 0.87; p << 0.001) between 5 clinical variables and 2 hemodynamic indices. To this end, in silico models of PH blood flow dynamics have a high potential for predicting the relevant clinical attributes of PH if analyzed in a group-wise manner using CCA.


Assuntos
Hemodinâmica , Hipertensão Pulmonar/fisiopatologia , Modelagem Computacional Específica para o Paciente , Adulto , Simulação por Computador , Progressão da Doença , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X
2.
Ann Biomed Eng ; 46(9): 1309-1324, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29786774

RESUMO

Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.


Assuntos
Modelos Cardiovasculares , Artéria Pulmonar/fisiologia , Simulação por Computador , Humanos , Hidrodinâmica , Imagens de Fantasmas , Impressão Tridimensional , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA