Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biochemistry ; 61(17): 1705-1722, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35972884

RESUMO

Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM Ki values. Here, we synthesized and characterized 3-aryl-mercapto-butyrylated peptide derivatives as effective and selective sirtuin 2 inhibitors with KD values in the low nanomolar range. According to kinetic measurements and microscale thermophoresis/surface plasmon resonance experiments, the respective inhibitors bind with the 3-aryl-mercapto moiety in the selectivity pocket of Sirtuin 2, inducing a rearrangement of the active site. In contrast, 3-aryl-mercapto-nonalyl or palmitoyl derivatives are characterized by a switch in the binding mode blocking both the hydrophobic channel by the fatty acyl chain and the nicotinamide pocket by the 3-aryl-mercapto moiety.


Assuntos
Sirtuína 2 , Sirtuínas , Domínio Catalítico , Humanos , Lisina/metabolismo , Niacinamida , Peptídeos , Sirtuína 2/metabolismo , Sirtuínas/metabolismo
2.
Biomol NMR Assign ; 16(2): 237-246, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35474152

RESUMO

The dysbindin domain-containing protein 1 (DBNDD1) is a conserved protein among higher eukaryotes whose structure and function are poorly investigated so far. Here, we present the backbone and side chain nuclear magnetic resonance assignments for the human DBNDD1 protein. Our chemical-shift based secondary structure analysis reveals the human DBNDD1 as an intrinsically disordered protein.


Assuntos
Proteínas Intrinsicamente Desordenadas , Disbindina , Humanos , Proteínas Intrinsicamente Desordenadas/química , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
3.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328563

RESUMO

Bispecific antibodies (bsAbs) were first developed in the 1960s and are now emerging as a leading class of immunotherapies for cancer treatment with the potential to further improve clinical efficacy and safety. Many different formats of bsAbs have been established in the last few years, mainly generated genetically. Here we report on a novel, flexible, and fast chemo-enzymatic, as well as purely enzymatic strategies, for generating bispecific antibody fragments by covalent fusion of two functional antibody Fab fragments (Fabs). For the chemo-enzymatic approach, we first modified the single Fabs site-specifically with click anchors using an enhanced Trypsiligase variant (eTl) and afterward converted the modified Fabs into the final heterodimers via click chemistry. Regarding the latter, we used the strain-promoted alkyne-azide cycloaddition (SPAAC) and inverse electron-demand Diels-Alder reaction (IEDDA) click approaches well known for their fast reaction kinetics and fewer side reactions. For applications where the non-natural linkages or hydrophobic click chemistry products might interfere, we developed two purely enzymatic alternatives enabling C- to C- and C- to N-terminal coupling of the two Fabs via a native peptide bond. This simple system could be expanded into a modular system, eliminating the need for extensive genetic engineering. The bispecific Fab fragments (bsFabs) produced here to bind the growth factors ErbB2 and ErbB3 with similar KD values, such as the sole Fabs. Tested in breast cancer cell lines, we obtained biologically active bsFabs with improved properties compared to its single Fab counterparts.


Assuntos
Anticorpos Biespecíficos , Azidas/química , Química Click , Reação de Cicloadição , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética
4.
Bioorg Chem ; 117: 105425, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695733

RESUMO

Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins. We designed and synthesized a set of activity probes by incorporation of a thioamide quencher unit into the fatty acid-derived acyl chain and a fluorophore in the peptide sequence. Systematic variation of both fluorophore and quencher position resulted "super-substrates" with catalytic constants of up to 15,000,000 M-1s-1 for human sirtuin 2 (Sirt2) enabling measurements using enzyme concentrations down to 100 pM in microtiter plate-based screening formats. It could be demonstrated that the stalled intermediate formed by the reaction of Sirt2-bound thiomyristoylated peptide and NAD+ has IC50 values below 200 pM.


Assuntos
Corantes Fluorescentes/química , Histona Desacetilases/metabolismo , Tomografia por Emissão de Pósitrons , Sirtuínas/metabolismo , Tioamidas/química , Transporte de Elétrons , Corantes Fluorescentes/farmacologia , Histona Desacetilases/química , Histona Desacetilases/genética , Humanos , Estrutura Molecular , Processos Fotoquímicos , Sirtuínas/antagonistas & inibidores , Sirtuínas/química , Tioamidas/farmacologia
5.
Biomol NMR Assign ; 15(2): 441-448, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34415548

RESUMO

Even though the human genome project showed that our DNA contains a mere 20,000 to 25,000 protein coding genes, an unexpectedly large number of these proteins remain functionally uncharacterized. A structural characterization of these "unknown" proteins may help to identify possible cellular tasks. We therefore used a combination of bioinformatics and nuclear magnetic resonance spectroscopy to structurally de-orphanize one of these gene products, the 108 amino acid human uncharacterized protein CXorf51A. Both our bioinformatics analysis as well as the [Formula: see text]H, [Formula: see text]C, [Formula: see text]N backbone and near-complete side-chain chemical shift assignments indicate that it is an intrinsically disordered protein.


Assuntos
Proteínas Intrinsicamente Desordenadas
6.
Phys Chem Chem Phys ; 23(21): 12395-12407, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34027941

RESUMO

Ionic liquids (ILs) have gained a lot of attention as alternative solvents in many fields of science in the last two decades. It is known that the type of anion has a significant influence on the macroscopic properties of the IL. To gain insights into the molecular mechanisms responsible for these effects it is important to characterize these systems at the microscopic level. Such information can be obtained from nuclear spin-relaxation studies which for compounds with natural isotope abundance are typically performed using direct 1H or 13C measurements. Here we used direct 15N measurements to characterize spin relaxation of non-protonated nitrogens in imidazolium-based ILs which are liquid at ambient temperature. We report heteronuclear 1H-15N scalar coupling constants (nJHN) and 15N relaxation parameters for non-protonated nitrogens in ten 1-ethyl-3-methylimidazolium ([C2C1IM]+)-based ILs containing a broad range of anions. The 15N relaxation rates and steady-state heteronuclear 15N-{1H} NOEs were measured using direct 15N detection at 293.2 K and two magnetic field strengths, 9.4 T and 16.4 T. The experimental data were analyzed to determine hydrodynamic characteristics of ILs and to assess the contributions to 15N relaxation from 15N chemical shift anisotropy and from 1H-15N dipolar interactions with non-bonded protons. We found that the rotational correlation times of the [C2C1IM]+ cation determined from 15N relaxation measurements at room temperature correlate linearly with the macroscopic viscosity of the ILs. Depending on the selected anion, the 15N relaxation characteristics of [C2C1IM]+ differ considerably reflecting the influence of the anion on the physicochemical properties of the IL.

7.
Biomol NMR Assign ; 15(1): 91-97, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33263927

RESUMO

Death-associated protein 1 (DAP1) is a proline-rich cytoplasmatic protein highly conserved in most eukaryotes. It has been reported to be involved in controlling cell growth and migration, autophagy and apoptosis. The presence of human DAP1 is associated to a favourable prognosis in different types of cancer. Here we describe the almost complete [Formula: see text], [Formula: see text], and [Formula: see text] chemical shift assignments of the human DAP1. The limited spectral dispersion, mainly in the [Formula: see text] region, and the lack of defined secondary structure elements, predicted based on chemical shifts, identifies human DAP1 as an intrinsically disordered protein (IDP). This work lays the foundation for further structural investigations, dynamic studies, mapping of potential interaction partners or drug screening and development.


Assuntos
Proteínas Reguladoras de Apoptose , Ressonância Magnética Nuclear Biomolecular , Proliferação de Células , Proteínas Intrinsicamente Desordenadas
8.
Chembiochem ; 22(7): 1201-1204, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33174659

RESUMO

Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg-His added to the proteins' native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.


Assuntos
Basigina/metabolismo , Receptores ErbB/metabolismo , Corantes Fluorescentes/metabolismo , Tripsina/metabolismo , Basigina/química , Biocatálise , Dipeptídeos/metabolismo , Receptores ErbB/química , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Especificidade por Substrato , Tripsina/genética
9.
Biomol NMR Assign ; 14(2): 163-168, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32240523

RESUMO

The brain and acute leukemia cytoplasmic (BAALC; UniProt entry Q8WXS3) is a 180-residue-long human protein having six known isoforms. BAALC is expressed in either hematopoietic or neuroectodermal cells and its specific function is still to be revealed. However, as a presumably membrane-anchored protein at the cytoplasmic side it is speculated that BAALC exerts its function at the postsynaptic densities of certain neurons and might play a role in developing cytogenetically normal acute myeloid leukemia (CN-AML) when it is highly overexpressed by myeloid or lymphoid progenitor cells. In order to better understand the physiological role of BAALC and to provide the basis for a further molecular characterization of BAALC, we report here the 1H, 13C, and 15N resonance assignments for the backbone nuclei of its longest hematopoietic isoform (isoform 1). In addition, we present a 1HN and 15NH chemical shift comparison of BAALC with its shortest, neuroectodermal isoform (isoform 6) which shows only minor changes in the 1H and 15N chemical shifts.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Proteínas de Neoplasias/análise , Espectroscopia de Prótons por Ressonância Magnética , Sequência de Aminoácidos , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Neoplasias/química , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Isoformas de Proteínas/química
10.
Methods Mol Biol ; 2033: 95-115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31332750

RESUMO

Site-specific incorporation of artificial functionalities into protein targets is an important tool in both basic and applied research and can be a major challenge to protein chemists. Chemical labeling methods often targeting multiple positions within a protein and therefore suffer from lack of specificity. Enzymatic protein modification is an attractive alternative due to the inherent regioselectivity and stereoselectivity of enzymes. In this contribution we describe the application of the highly specific trypsin variant named trypsiligase for the site-specific modification of virtual any target protein. We present two general routes of modification resulting in either N- or C-terminal functionalized protein products. Both reaction regimes proceed under mild and bioorthogonal conditions in a short period of time which result in homogeneously modified proteins bearing the artificial functionality exclusively at the desired position. We detail protocols for the expression and purification of trypsiligase as well as the construction of peptide or acyl donor ester probes used as substrates for the biocatalyst. In addition, we provide instructions how to perform the ultimate bioconjugation reactions and finally render assistance for the qualitative and quantitative analysis of the reaction course and outcome.


Assuntos
Motivos de Aminoácidos/genética , Ligases/química , Engenharia de Proteínas/métodos , Tripsina/química , Humanos , Ligases/genética , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/genética , Processamento de Proteína Pós-Traducional/genética , Especificidade por Substrato , Tripsina/genética
11.
Methods Mol Biol ; 2012: 111-133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31161506

RESUMO

Site-specific incorporation of nonproteinogenic functionalities into protein targets is an important tool in both basic and applied research and represents a major challenge to protein chemists. Chemical labeling methods often target multiple positions within a protein and therefore suffer from a lack of specificity. Enzymatic protein modification is an attractive alternative due to the inherent regioselectivity and stereoselectivity of enzymes. In this chapter we describe the application of the highly specific trypsin variant trypsiligase for the site-specific modification of virtual any target protein. We present two general routes of modification resulting in either N- or C-terminal functionalized protein products. Reactions rapidly proceed under mild conditions and result in homogeneously modified proteins bearing the artificial functionality exclusively at the desired position. We detail protocols for the expression and purification of trypsiligase as well as the synthesis of peptide (ester) substrates. In addition, we provide instructions for the bioconjugation reactions and for the qualitative and quantitative analysis of reaction progress and efficiency.


Assuntos
Ligases/química , Peptídeos/química , Proteínas/química , Tripsina/química , Catálise , Hidrólise , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes , Especificidade por Substrato
12.
Front Microbiol ; 10: 711, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001242

RESUMO

The application of D-stereospecific proteases (DSPs) in resolution of racemic amino acids and in the semisynthesis of proteins has been a successful strategy. The main limitation for a broader application is, however, the accessibility of suitable DSPs covering multiple substrate specificities. To identify DSPs with novel primary substrate preferences, a fast specificity screening method using the easily accessible internally quenched fluorogenic substrate aminobenzoyl-D-arginyl-D-alanyl-p-nitroanilide was developed. By monitoring both UV/vis-absorbance and fluorescence signals at the same time it allows to detect two distinct D-amino acid substrate specificities simultaneously and separately with respect to the individual specificities. In order to identify novel DSP specificities for synthesis applications, DSPs specific for D-arginine were of special interest due to their potential ability as catalysts for substrate mimetics-mediated peptide and protein ligations. D-alanine in the substrate served as positive control and reference based on its known acceptance by numerous DSPs. In silico analysis suggested that DSPs are predominantly present in gram-positive microorganisms, therefore this study focused on the bacilli strains Bacillus thuringiensis and Bacillus subtilis as potential hosts of D-Arg-specific DSPs. While protease activities toward D-alanine were found in both organisms, a novel and so far unknown D-arginine specific DSP was detected within the culture supernatant of B. thuringiensis. Enrichment of this activity via cation exchange and size exclusion chromatography allowed isolation and further characterization of this novel enzyme consisting of a molecular mass of 37.7 kDa and an enzymatic activity of 8.3 U mg-1 for cleaving the D-Arg|D-Ala bond in the detecting substrate. Independent experiments also showed that the identified enzyme shows similarities to the class of penicillin binding proteins. In future applications this enzyme will be a promising starting point for the development of novel strategies for the semisynthesis of all-L-proteins.

13.
RSC Adv ; 9(61): 35735-35750, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35528082

RESUMO

NMR spectroscopy at two magnetic field strengths was employed to investigate the dynamics of dimethylimidazolium dimethylphosphate ([C1C1IM][(CH3)2PO4]). [C1C1IM][(CH3)2PO4] is a low-melting, halogen-free ionic liquid comprising of only methyl groups. 13C spin-lattice relaxation rates as well as self-diffusion coefficients were measured for [C1C1IM][(CH3)2PO4] as a function of temperature. The rotational correlation times, τ c, for the cation and the anion were obtained from the 13C spin-lattice relaxation rates. Although from a theoretical point of view cations and anions are similar in size, they show different reorientation mobilities and diffusivities. The self-diffusion coefficients and the rotational correlation times were related to the radii of the diffusing spheres. The analysis reveals that the radii of the cation and the anion, respectively, are different from each other but constant at temperatures ranging from 293 to 353 K. The experimental results are rationalised by a discrete and individual cation and anion diffusion. The [(CH3)2PO4]- anion reorients faster compared to the cation but diffuses significantly slower indicating the formation of anionic aggregates. Relaxation data were acquired with standard liquid and magic-angle-spinning NMR probes to estimate residual dipolar interactions, chemical shift anisotropy or differences in magnetic susceptibility within the sample.

14.
J Med Chem ; 61(6): 2460-2471, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29494161

RESUMO

Sirtuins are protein deacylases that regulate metabolism and stress responses and are implicated in aging-related diseases. Modulators of the human sirtuins Sirt1-7 are sought as chemical tools and potential therapeutics, e.g., for cancer. Selective and potent inhibitors are available for Sirt2, but selective inhibitors for Sirt5 with Ki values in the low nanomolar range are lacking. We synthesized and screened 3-arylthiosuccinylated and 3-benzylthiosuccinylated peptide derivatives yielding Sirt5 inhibitors with low-nanomolar Ki values. A biotinylated derivative with this scaffold represents an affinity probe for human Sirt5 that is able to selectively extract this enzyme out of complex biological samples like cell lysates. Crystal structures of Sirt5/inhibitor complexes reveal that the compounds bind in an unexpected manner to the active site of Sirt5.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Sirtuínas/antagonistas & inibidores , Biologia Computacional , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Proteínas Recombinantes/química , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
15.
Phys Chem Chem Phys ; 19(35): 24115-24125, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28836637

RESUMO

NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1H and 13C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

16.
Nucleic Acids Res ; 45(7): 3997-4005, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28158820

RESUMO

Biological evolution resulted in a homochiral world in which nucleic acids consist exclusively of d-nucleotides and proteins made by ribosomal translation of l-amino acids. From the perspective of synthetic biology, however, particularly anabolic enzymes that could build the mirror-image counterparts of biological macromolecules such as l-DNA or l-RNA are lacking. Based on a convergent synthesis strategy, we have chemically produced and characterized a thermostable mirror-image polymerase that efficiently replicates and amplifies mirror-image (l)-DNA. This artificial enzyme, dubbed d-Dpo4-3C, is a mutant of Sulfolobus solfataricus DNA polymerase IV consisting of 352 d-amino acids. d-Dpo4-3C was reliably deployed in classical polymerase chain reactions (PCR) and it was used to assemble a first mirror-image gene coding for the protein Sso7d. We believe that this d-polymerase provides a valuable tool to further investigate the mysteries of biological (homo)chirality and to pave the way for potential novel life forms running on a mirror-image genome.


Assuntos
DNA Polimerase beta/genética , DNA/biossíntese , Proteínas Arqueais/genética , DNA/química , DNA Polimerase beta/síntese química , DNA Polimerase beta/metabolismo , Proteínas de Ligação a DNA/genética , Estabilidade Enzimática , Mutação , Estereoisomerismo , Sulfolobus solfataricus/enzimologia , Temperatura
17.
Biomol NMR Assign ; 10(2): 329-33, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27351892

RESUMO

Interleukin-36α (IL-36α) is a recently characterised member of the interleukin-1 superfamily. It is involved in the pathogenesis of inflammatory arthritis in one third of psoriasis patients. By binding of IL-36α to its receptor IL-36R via the NF-κB pathway other cytokines involved in inflammatory and apoptotic cascade are activated. The efficacy of complex formation is controlled by N-terminal processing. To obtain a more detailed view on the structure function relationship we performed a heteronuclear multidimensional NMR investigation and here report the (1)H, (13)C, and (15)N resonance assignments for the backbone and side chain nuclei of the pro-inflammatory cytokine interleukin-36α.


Assuntos
Interleucina-1/química , Interleucina-1/metabolismo , Ressonância Magnética Nuclear Biomolecular , Inflamação/metabolismo
18.
Chemphyschem ; 17(13): 1961-8, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27061973

RESUMO

The RF pulse scheme RN[N-CA HEHAHA]NH, which provides a convenient approach to the acquisition of different multidimensional chemical shift correlation NMR spectra leading to backbone resonance assignments, including those of the proline residues of intrinsically disordered proteins (IDPs), is experimentally demonstrated. Depending on the type of correlation data required, the method involves the generation of in-phase ((15) N)(x) magnetisation via different magnetisation transfer pathways such as H→N→CO→N, HA→CA→CO→N, H→N→CA→N and H→CA→N, the subsequent application of (15) N-(13) C(α) heteronuclear Hartmann-Hahn mixing over a period of ≈100 ms, chemical-shift labelling of relevant nuclei before and after the heteronuclear mixing step and amide proton detection in the acquisition dimension. It makes use of the favourable relaxation properties of IDPs and the presence of (1) JCαN and (2) JCαN couplings to achieve efficient correlation of the backbone resonances of each amino acid residue "i" with the backbone amide resonances of residues "i-1" and "i+1". It can be implemented in a straightforward way through simple modifications of the RF pulse schemes commonly employed in protein NMR studies. The efficacy of the approach is demonstrated using a uniformly ((15) N,(13) C) labelled sample of α-synuclein. The different possibilities for obtaining the amino-acid-type information, simultaneously with the connectivity data between the backbone resonances of sequentially neighbouring residues, have also been outlined.


Assuntos
Ressonância Magnética Nuclear Biomolecular , alfa-Sinucleína/química
19.
Bioconjug Chem ; 27(1): 47-53, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26670641

RESUMO

The combination of pure chemical methods with enzymatic approaches offers a kit system with maximum flexibility for site-specifically tagging proteins with a broad variety of artificial structures. Trypsiligase, a recently introduced designer enzyme for both N- and C-terminal site-specific labeling of peptides and proteins, has been used to introduce click anchors into the human protein cyclophilin 18 and the antibody Fab fragments anti-TNFα and anti-Her2. The subsequent click reactions with tetrazine or norbornene moieties lead to quantitative conversions to the corresponding dihydropyridazine products, thereby forming a stable covalent linkage between the label and the protein of interest. With this technology, cyclophilin 18 has been efficiently modified with the fluorescent dansyl moiety and the pharmaceutically relevant polymer PEG exclusively at its N-terminus. With the same methodology, the Fab fragments of anti-TNFα and anti-Her2 were derivatized exclusively at their C-terminal ends with PEG and the fluorescent dye carboxyfluorescein in the case of anti-TNFα or with the cytotoxic payload DM1 in the case of anti-Her2, to form a homogeneous antibody-drug conjugate (ADC).


Assuntos
Química Click , Fragmentos Fab das Imunoglobulinas/química , Proteínas/química , Ciclofilinas/química , Enzimas/genética , Enzimas/metabolismo , Fluoresceínas/química , Corantes Fluorescentes/química , Humanos , Imunoconjugados/química , Fosfatidilcolinas/química , Polietilenoglicóis/química , Receptor ErbB-2/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trastuzumab/química , Fator de Necrose Tumoral alfa/imunologia
20.
Chembiochem ; 15(8): 1096-100, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24782039

RESUMO

Bioconjugates, such as antibody-drug conjugates, have gained recent attention because of their increasing use in therapeutic and diagnostic applications. Commonly used conjugation reactions based upon chemoselective reagents exhibit a number of drawbacks: most of these reactions lack regio- and stereospecificity, thus resulting in loss of protein functionality due to random modifications. Enzymes provide an obvious solution to this problem, but the intrinsic (natural) substrate specificities of existing enzymes pose severe limitations to the kind of modifications that can be introduced. Here we describe the application of the novel trypsin variant trypsiligase for site-specific modification of the C terminus of a Fab antibody fragment via a stable peptide bond. The suitability of this designed biocatalyst was demonstrated by coupling the Her2-specific Fab to artificial functionalities of either therapeutic (PEG) or diagnostic (fluorescein) relevance. In both cases we obtained homogeneously modified Fab products bearing the artificial functionality exclusively at the desired position.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Tripsina/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Biocatálise , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA