Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
J Am Med Inform Assoc ; 30(7): 1293-1300, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37192819

RESUMO

Research increasingly relies on interrogating large-scale data resources. The NIH National Heart, Lung, and Blood Institute developed the NHLBI BioData CatalystⓇ (BDC), a community-driven ecosystem where researchers, including bench and clinical scientists, statisticians, and algorithm developers, find, access, share, store, and compute on large-scale datasets. This ecosystem provides secure, cloud-based workspaces, user authentication and authorization, search, tools and workflows, applications, and new innovative features to address community needs, including exploratory data analysis, genomic and imaging tools, tools for reproducibility, and improved interoperability with other NIH data science platforms. BDC offers straightforward access to large-scale datasets and computational resources that support precision medicine for heart, lung, blood, and sleep conditions, leveraging separately developed and managed platforms to maximize flexibility based on researcher needs, expertise, and backgrounds. Through the NHLBI BioData Catalyst Fellows Program, BDC facilitates scientific discoveries and technological advances. BDC also facilitated accelerated research on the coronavirus disease-2019 (COVID-19) pandemic.


Assuntos
COVID-19 , Computação em Nuvem , Humanos , Ecossistema , Reprodutibilidade dos Testes , Pulmão , Software
2.
Gastroenterology ; 157(4): 1109-1122, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31255652

RESUMO

BACKGROUND & AIMS: The intestinal microbiome might affect the development and severity of nonalcoholic fatty liver disease (NAFLD). We analyzed microbiomes of children with and without NAFLD. METHODS: We performed a prospective, observational, cross-sectional study of 87 children (age range, 8-17 years) with biopsy-proven NAFLD and 37 children with obesity without NAFLD (controls). Fecal samples were collected and microbiome composition and functions were assessed using 16S ribosomal RNA amplicon sequencing and metagenomic shotgun sequencing. Microbial taxa were identified using zero-inflated negative binomial modeling. Genes contributing to bacterial pathways were identified using gene set enrichment analysis. RESULTS: Fecal microbiomes of children with NAFLD had lower α-diversity than those of control children (3.32 vs 3.52, P = .016). Fecal microbiomes from children with nonalcoholic steatohepatitis (NASH) had the lowest α-diversity (control, 3.52; NAFLD, 3.36; borderline NASH, 3.37; NASH, 2.97; P = .001). High abundance of Prevotella copri was associated with more severe fibrosis (P = .036). Genes for lipopolysaccharide biosynthesis were enriched in microbiomes from children with NASH (P < .001). Classification and regression tree model with level of alanine aminotransferase and relative abundance of the lipopolysaccharide pathway gene encoding 3-deoxy-d-manno-octulosonate 8-phosphate-phosphatase identified patients with NASH with an area under the receiver operating characteristic curve value of 0.92. Genes involved in flagellar assembly were enriched in the fecal microbiomes of patients with moderate to severe fibrosis (P < .001). Classification and regression tree models based on level of alanine aminotransferase and abundance of genes encoding flagellar biosynthesis protein had good accuracy for identifying case children with moderate to severe fibrosis (area under the receiver operating characteristic curve, 0.87). CONCLUSIONS: In an analysis of fecal microbiomes of children with NAFLD, we associated NAFLD and NASH with intestinal dysbiosis. NAFLD and its severity were associated with greater abundance of genes encoding inflammatory bacterial products. Alterations to the intestinal microbiome might contribute to the pathogenesis of NAFLD and be used as markers of disease or severity.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Microbioma Gastrointestinal , Intestinos/microbiologia , Cirrose Hepática/microbiologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , RNA Ribossômico 16S/genética , Adolescente , Bactérias/classificação , Bactérias/patogenicidade , Estudos de Casos e Controles , Criança , Estudos Transversais , Disbiose , Fezes/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Masculino , Metagenoma , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Estudos Prospectivos , Ribotipagem , Índice de Gravidade de Doença
3.
Hepatol Commun ; 3(7): 894-907, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31334442

RESUMO

The accumulation of excess fat in the liver (hepatic steatosis) in the absence of heavy alcohol consumption causes nonalcoholic fatty liver disease (NAFLD), which has become a global epidemic. Identifying metabolic risk factors that interact with the genetic risk of NAFLD is important for reducing disease burden. We tested whether serum glucose, insulin, insulin resistance, triglyceride (TG), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, body mass index (BMI), and waist-to-hip ratio adjusted for BMI interact with genetic variants in or near the patatin-like phospholipase domain containing 3 (PNPLA3) gene, the glucokinase regulatory protein (GCKR) gene, the neurocan/transmembrane 6 superfamily member 2 (NCAN/TM6SF2) gene, and the lysophospholipase-like 1 (LYPLAL1) gene to exacerbate hepatic steatosis, estimated by liver attenuation. We performed association analyses in 10 population-based cohorts separately and then meta-analyzed results in up to 14,751 individuals (11,870 of European ancestry and 2,881 of African ancestry). We found that PNPLA3-rs738409 significantly interacted with insulin, insulin resistance, BMI, glucose, and TG to increase hepatic steatosis in nondiabetic individuals carrying the G allele. Additionally, GCKR-rs780094 significantly interacted with insulin, insulin resistance, and TG. Conditional analyses using the two largest European ancestry cohorts in the study showed that insulin levels accounted for most of the interaction of PNPLA3-rs738409 with BMI, glucose, and TG in nondiabetic individuals. Insulin, PNPLA3-rs738409, and their interaction accounted for at least 8% of the variance in hepatic steatosis in these two cohorts. Conclusion: Insulin resistance, either directly or through the resultant elevated insulin levels, more than other metabolic traits, appears to amplify the PNPLA3-rs738409-G genetic risk for hepatic steatosis. Improving insulin resistance in nondiabetic individuals carrying PNPLA3-rs738409-G may preferentially decrease hepatic steatosis.

4.
Front Genet ; 10: 158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863429

RESUMO

Background: Associations of both common and rare genetic variants with fasting blood lipids have been extensively studied. However, most of the rare coding variants associated with lipids are population-specific, and exploration of genetic data from diverse population samples may enhance the identification of novel associations with rare variants. Results: We searched for novel coding genetic variants associated with fasting lipid levels in 894 samples from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) with exome-wide sequencing-based genotype data. In single variant tests, one variant (rs11171663 in ITGA7) was associated with fasting triglyceride levels (P = 7.66E-08), explaining approximately 3.2% of the total trait variance. In gene-based tests, we found statistically significant associations between ITGA7 (P = 1.77E-07) and SLCO2A1 (P = 7.18E-07) and triglycerides, as well as between POT1 (P = 3.00E-07) and low-density lipoprotein cholesterol. In another independent replication cohort consisting of 3,183 African American samples from Hypertension Genetic Epidemiology Network (HyperGEN) and the Genetic Epidemiology Network of Arteriopathy (GENOA), the top genes achieved P-values of 0.04 (ITGA7), 0.08 (SLCO2A1), and 0.02 (POT1). In GOLDN, gene transcript levels of ITGA7 and SLCO2A1 were associated with fasting triglycerides (P = 0.07 and P = 0.02), highlighting functional relevance of our findings. Conclusion: In this study, we present preliminary evidence of novel rare variant determinants of fasting lipids, and reveal potential underlying molecular mechanisms. Moreover, these results were replicated in an independent cohort. Our findings may inform novel biomarkers of disease risk and treatment targets.

5.
Am J Clin Nutr ; 109(2): 276-287, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30721968

RESUMO

Background: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age2, and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LM were termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.


Assuntos
Tecido Adiposo/metabolismo , Composição Corporal/genética , Compartimentos de Líquidos Corporais/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas ADAMTS/genética , Absorciometria de Fóton , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Impedância Elétrica , Proteínas da Matriz Extracelular/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Ligação a RNA/genética , Receptor Tipo 4 de Melanocortina/genética , Versicanas/genética , População Branca/genética , Adulto Jovem
6.
Am J Hum Genet ; 104(2): 260-274, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639324

RESUMO

With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.


Assuntos
Estudos de Associação Genética , Modelos Genéticos , Sequenciamento Completo do Genoma , Cromossomos Humanos Par 4/genética , Computação em Nuvem , Feminino , Fibrinogênio/análise , Fibrinogênio/genética , Genética Populacional , Humanos , Masculino , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisão , Projetos de Pesquisa , Fatores de Tempo , Estados Unidos
7.
PLoS Genet ; 14(4): e1007222, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608557

RESUMO

Human GWAS of obesity have been successful in identifying loci associated with adiposity, but for the most part, these are non-coding SNPs whose function, or even whose gene of action, is unknown. To help identify the genes on which these human BMI loci may be operating, we conducted a high throughput screen in Drosophila melanogaster. Starting with 78 BMI loci from two recently published GWAS meta-analyses, we identified fly orthologs of all nearby genes (± 250KB). We crossed RNAi knockdown lines of each gene with flies containing tissue-specific drivers to knock down (KD) the expression of the genes only in the brain and the fat body. We then raised the flies on a control diet and compared the amount of fat/triglyceride in the tissue-specific KD group compared to the driver-only control flies. 16 of the 78 BMI GWAS loci could not be screened with this approach, as no gene in the 500-kb region had a fly ortholog. Of the remaining 62 GWAS loci testable in the fly, we found a significant fat phenotype in the KD flies for at least one gene for 26 loci (42%) even after correcting for multiple comparisons. By contrast, the rate of significant fat phenotypes in RNAi KD found in a recent genome-wide Drosophila screen (Pospisilik et al. (2010) is ~5%. More interestingly, for 10 of the 26 positive regions, we found that the nearest gene was not the one that showed a significant phenotype in the fly. Specifically, our screen suggests that for the 10 human BMI SNPs rs11057405, rs205262, rs9925964, rs9914578, rs2287019, rs11688816, rs13107325, rs7164727, rs17724992, and rs299412, the functional genes may NOT be the nearest ones (CLIP1, C6orf106, KAT8, SMG6, QPCTL, EHBP1, SLC39A8, ADPGK /ADPGK-AS1, PGPEP1, KCTD15, respectively), but instead, the specific nearby cis genes are the functional target (namely: ZCCHC8, VPS33A, RSRC2; SPDEF, NUDT3; PAGR1; SETD1, VKORC1; SGSM2, SRR; VASP, SIX5; OTX1; BANK1; ARIH1; ELL; CHST8, respectively). The study also suggests further functional experiments to elucidate mechanism of action for genes evolutionarily conserved for fat storage.


Assuntos
Índice de Massa Corporal , Cruzamentos Genéticos , Drosophila melanogaster/genética , Estudo de Associação Genômica Ampla , Obesidade/genética , Interferência de RNA , Tecido Adiposo , Animais , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
N Engl J Med ; 378(12): 1096-1106, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29562163

RESUMO

BACKGROUND: Elucidation of the genetic factors underlying chronic liver disease may reveal new therapeutic targets. METHODS: We used exome sequence data and electronic health records from 46,544 participants in the DiscovEHR human genetics study to identify genetic variants associated with serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Variants that were replicated in three additional cohorts (12,527 persons) were evaluated for association with clinical diagnoses of chronic liver disease in DiscovEHR study participants and two independent cohorts (total of 37,173 persons) and with histopathological severity of liver disease in 2391 human liver samples. RESULTS: A splice variant (rs72613567:TA) in HSD17B13, encoding the hepatic lipid droplet protein hydroxysteroid 17-beta dehydrogenase 13, was associated with reduced levels of ALT (P=4.2×10-12) and AST (P=6.2×10-10). Among DiscovEHR study participants, this variant was associated with a reduced risk of alcoholic liver disease (by 42% [95% confidence interval {CI}, 20 to 58] among heterozygotes and by 53% [95% CI, 3 to 77] among homozygotes), nonalcoholic liver disease (by 17% [95% CI, 8 to 25] among heterozygotes and by 30% [95% CI, 13 to 43] among homozygotes), alcoholic cirrhosis (by 42% [95% CI, 14 to 61] among heterozygotes and by 73% [95% CI, 15 to 91] among homozygotes), and nonalcoholic cirrhosis (by 26% [95% CI, 7 to 40] among heterozygotes and by 49% [95% CI, 15 to 69] among homozygotes). Associations were confirmed in two independent cohorts. The rs72613567:TA variant was associated with a reduced risk of nonalcoholic steatohepatitis, but not steatosis, in human liver samples. The rs72613567:TA variant mitigated liver injury associated with the risk-increasing PNPLA3 p.I148M allele and resulted in an unstable and truncated protein with reduced enzymatic activity. CONCLUSIONS: A loss-of-function variant in HSD17B13 was associated with a reduced risk of chronic liver disease and of progression from steatosis to steatohepatitis. (Funded by Regeneron Pharmaceuticals and others.).


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Fígado Gorduroso/genética , Predisposição Genética para Doença , Hepatopatias/genética , Mutação com Perda de Função , 17-Hidroxiesteroide Desidrogenases/metabolismo , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Doença Crônica , Progressão da Doença , Feminino , Variação Genética , Genótipo , Humanos , Modelos Lineares , Fígado/patologia , Hepatopatias/patologia , Masculino , Análise de Sequência de RNA , Sequenciamento do Exoma
9.
J Lipid Res ; 59(4): 722-729, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29463568

RESUMO

Our understanding of genetic influences on the response of lipids to specific interventions is limited. In this study, we sought to elucidate effects of rare genetic variants on lipid response to a high-fat meal challenge and fenofibrate (FFB) therapy in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) cohort using an exome-wide sequencing-based association study. Our results showed that the rare coding variants in ITGA7, SIPA1L2, and CEP72 are significantly associated with fasting LDL cholesterol response to FFB (P = 1.24E-07), triglyceride postprandial area under the increase (AUI) (P = 2.31E-06), and triglyceride postprandial AUI response to FFB (P = 1.88E-06), respectively. We sought to replicate the association for SIPA1L2 in the Heredity and Phenotype Intervention (HAPI) Heart Study, which included a high-fat meal challenge but not FFB treatment. The associated rare variants in GOLDN were not observed in the HAPI Heart study, and thus the gene-based result was not replicated. For functional validation, we found that gene transcript level of SIPA1L2 is associated with triglyceride postprandial AUI (P < 0.05) in GOLDN. Our study suggests unique genetic mechanisms contributing to the lipid response to the high-fat meal challenge and FFB therapy.


Assuntos
Gorduras na Dieta/administração & dosagem , Fenofibrato/uso terapêutico , Lipídeos/genética , Estudos de Coortes , Metilação de DNA/genética , Exoma , Fenofibrato/administração & dosagem , Humanos , Análise de Sequência de RNA , População Branca
11.
Nat Commun ; 8(1): 80, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724990

RESUMO

Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 × 10-8) or suggestively genome wide (p < 2.3 × 10-6). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.Lean body mass is a highly heritable trait and is associated with various health conditions. Here, Kiel and colleagues perform a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.


Assuntos
Estudo de Associação Genômica Ampla , Magreza/genética , 17-Hidroxiesteroide Desidrogenases/genética , Proteínas ADAMTS/genética , Aldeído Oxirredutases/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Composição Corporal , Proteínas da Matriz Extracelular/genética , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Elementos Reguladores de Transcrição , Versicanas/genética
12.
Circ Cardiovasc Genet ; 10(3)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28620071

RESUMO

BACKGROUND: Several consortia have pursued genome-wide association studies for identifying novel genetic loci for blood pressure, lipids, hypertension, etc. They demonstrated the power of collaborative research through meta-analysis of study-specific results. METHODS AND RESULTS: The Gene-Lifestyle Interactions Working Group was formed to facilitate the first large, concerted, multiancestry study to systematically evaluate gene-lifestyle interactions. In stage 1, genome-wide interaction analysis is performed in 53 cohorts with a total of 149 684 individuals from multiple ancestries. In stage 2 involving an additional 71 cohorts with 460 791 individuals from multiple ancestries, focused analysis is performed for a subset of the most promising variants from stage 1. In all, the study involves up to 610 475 individuals. Current focus is on cardiovascular traits including blood pressure and lipids, and lifestyle factors including smoking, alcohol, education (as a surrogate for socioeconomic status), physical activity, psychosocial variables, and sleep. The total sample sizes vary among projects because of missing data. Large-scale gene-lifestyle or more generally gene-environment interaction (G×E) meta-analysis studies can be cumbersome and challenging. This article describes the design and some of the approaches pursued in the interaction projects. CONCLUSIONS: The Gene-Lifestyle Interactions Working Group provides an excellent framework for understanding the lifestyle context of genetic effects and to identify novel trait loci through analysis of interactions. An important and novel feature of our study is that the gene-lifestyle interaction (G×E) results may improve our knowledge about the underlying mechanisms for novel and already known trait loci.


Assuntos
Interação Gene-Ambiente , Estilo de Vida/etnologia , Pressão Sanguínea , Estudos de Coortes , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Lipídeos/sangue , Modelos Teóricos , Fenótipo , Polimorfismo de Nucleotídeo Único , Projetos de Pesquisa
13.
Nat Neurosci ; 20(8): 1052-1061, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628103

RESUMO

A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Alelos , Animais , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação/genética , Masculino , Camundongos , Fatores de Risco , Fatores de Transcrição/genética
14.
Circ Res ; 121(1): 81-88, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28506971

RESUMO

RATIONALE: Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition. OBJECTIVE: To test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD. METHODS AND RESULTS: We sequenced the exons of the CETP gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; P<1.0×10-4), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; P=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; P=5.1×10-3). CONCLUSIONS: Compared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/genética , Doença das Coronárias/diagnóstico , Doença das Coronárias/genética , Variação Genética/genética , Adulto , Idoso , Estudos de Casos e Controles , Proteínas de Transferência de Ésteres de Colesterol/sangue , Doença das Coronárias/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
16.
Sci Rep ; 7: 45040, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28452372

RESUMO

HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10-8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.


Assuntos
Biologia Computacional/métodos , Loci Gênicos , Rim/fisiologia , Frequência do Gene , Genoma Humano , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Polimorfismo de Nucleotídeo Único
17.
JAMA ; 317(9): 937-946, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28267856

RESUMO

Importance: The activity of lipoprotein lipase (LPL) is the rate-determining step in clearing triglyceride-rich lipoproteins from the circulation. Mutations that damage the LPL gene (LPL) lead to lifelong deficiency in enzymatic activity and can provide insight into the relationship of LPL to human disease. Objective: To determine whether rare and/or common variants in LPL are associated with early-onset coronary artery disease (CAD). Design, Setting, and Participants: In a cross-sectional study, LPL was sequenced in 10 CAD case-control cohorts of the multinational Myocardial Infarction Genetics Consortium and a nested CAD case-control cohort of the Geisinger Health System DiscovEHR cohort between 2010 and 2015. Common variants were genotyped in up to 305 699 individuals of the Global Lipids Genetics Consortium and up to 120 600 individuals of the CARDIoGRAM Exome Consortium between 2012 and 2014. Study-specific estimates were pooled via meta-analysis. Exposures: Rare damaging mutations in LPL included loss-of-function variants and missense variants annotated as pathogenic in a human genetics database or predicted to be damaging by computer prediction algorithms trained to identify mutations that impair protein function. Common variants in the LPL gene region included those independently associated with circulating triglyceride levels. Main Outcomes and Measures: Circulating lipid levels and CAD. Results: Among 46 891 individuals with LPL gene sequencing data available, the mean (SD) age was 50 (12.6) years and 51% were female. A total of 188 participants (0.40%; 95% CI, 0.35%-0.46%) carried a damaging mutation in LPL, including 105 of 32 646 control participants (0.32%) and 83 of 14 245 participants with early-onset CAD (0.58%). Compared with 46 703 noncarriers, the 188 heterozygous carriers of an LPL damaging mutation displayed higher plasma triglyceride levels (19.6 mg/dL; 95% CI, 4.6-34.6 mg/dL) and higher odds of CAD (odds ratio = 1.84; 95% CI, 1.35-2.51; P < .001). An analysis of 6 common LPL variants resulted in an odds ratio for CAD of 1.51 (95% CI, 1.39-1.64; P = 1.1 × 10-22) per 1-SD increase in triglycerides. Conclusions and Relevance: The presence of rare damaging mutations in LPL was significantly associated with higher triglyceride levels and presence of coronary artery disease. However, further research is needed to assess whether there are causal mechanisms by which heterozygous lipoprotein lipase deficiency could lead to coronary artery disease.


Assuntos
Doença da Artéria Coronariana/genética , Lipase Lipoproteica/genética , Mutação , Adulto , Idade de Início , Estudos de Casos e Controles , Estudos Transversais , Feminino , Genótipo , Heterozigoto , Humanos , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Razão de Chances , Triglicerídeos/sangue
18.
Nat Genet ; 49(1): 125-130, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27918534

RESUMO

Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size-weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men of European, African, Hispanic and Chinese ancestry, with and without sex stratification, for six traits associated with ectopic fat (hereinafter referred to as ectopic-fat traits). In total, we identified seven new loci associated with ectopic-fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P < 5 × 10-8; false discovery rate < 1%). Functional analysis of these genes showed that loss of function of either Atxn1 or Ube2e2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting physiological roles for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes affect adipocyte biology and how their perturbations contribute to systemic metabolic disease.


Assuntos
Adipócitos/citologia , Distribuição da Gordura Corporal , Diferenciação Celular , Loci Gênicos/genética , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Adipócitos/metabolismo , Animais , Estudos de Coortes , Etnicidade/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Fenótipo
19.
Pac Symp Biocomput ; 22: 533-544, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27897004

RESUMO

A wide range of patient health data is recorded in Electronic Health Records (EHR). This data includes diagnosis, surgical procedures, clinical laboratory measurements, and medication information. Together this information reflects the patient's medical history. Many studies have efficiently used this data from the EHR to find associations that are clinically relevant, either by utilizing International Classification of Diseases, version 9 (ICD-9) codes or laboratory measurements, or by designing phenotype algorithms to extract case and control status with accuracy from the EHR. Here we developed a strategy to utilize longitudinal quantitative trait data from the EHR at Geisinger Health System focusing on outpatient metabolic and complete blood panel data as a starting point. Comprehensive Metabolic Panel (CMP) as well as Complete Blood Counts (CBC) are parts of routine care and provide a comprehensive picture from high level screening of patients' overall health and disease. We randomly split our data into two datasets to allow for discovery and replication. We first conducted a genome-wide association study (GWAS) with median values of 25 different clinical laboratory measurements to identify variants from Human Omni Express Exome beadchip data that are associated with these measurements. We identified 687 variants that associated and replicated with the tested clinical measurements at p<5×10-08. Since longitudinal data from the EHR provides a record of a patient's medical history, we utilized this information to further investigate the ICD-9 codes that might be associated with differences in variability of the measurements in the longitudinal dataset. We identified low and high variance patients by looking at changes within their individual longitudinal EHR laboratory results for each of the 25 clinical lab values (thus creating 50 groups - a high variance and a low variance for each lab variable). We then performed a PheWAS analysis with ICD-9 diagnosis codes, separately in the high variance group and the low variance group for each lab variable. We found 717 PheWAS associations that replicated at a p-value less than 0.001. Next, we evaluated the results of this study by comparing the association results between the high and low variance groups. For example, we found 39 SNPs (in multiple genes) associated with ICD-9 250.01 (Type-I diabetes) in patients with high variance of plasma glucose levels, but not in patients with low variance in plasma glucose levels. Another example is the association of 4 SNPs in UMOD with chronic kidney disease in patients with high variance for aspartate aminotransferase (discovery p-value: 8.71×10-09 and replication p-value: 2.03×10-06). In general, we see a pattern of many more statistically significant associations from patients with high variance in the quantitative lab variables, in comparison with the low variance group across all of the 25 laboratory measurements. This study is one of the first of its kind to utilize quantitative trait variance from longitudinal laboratory data to find associations among genetic variants and clinical phenotypes obtained from an EHR, integrating laboratory values and diagnosis codes to understand the genetic complexities of common diseases.


Assuntos
Estudo de Associação Genômica Ampla/estatística & dados numéricos , Análise de Variância , Contagem de Células Sanguíneas/estatística & dados numéricos , Análise Química do Sangue/estatística & dados numéricos , Biologia Computacional , Registros Eletrônicos de Saúde/estatística & dados numéricos , Redes Reguladoras de Genes , Humanos , Classificação Internacional de Doenças , Estudos Longitudinais , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
20.
Science ; 354(6319)2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008009

RESUMO

The DiscovEHR collaboration between the Regeneron Genetics Center and Geisinger Health System couples high-throughput sequencing to an integrated health care system using longitudinal electronic health records (EHRs). We sequenced the exomes of 50,726 adult participants in the DiscovEHR study to identify ~4.2 million rare single-nucleotide variants and insertion/deletion events, of which ~176,000 are predicted to result in a loss of gene function. Linking these data to EHR-derived clinical phenotypes, we find clinical associations supporting therapeutic targets, including genes encoding drug targets for lipid lowering, and identify previously unidentified rare alleles associated with lipid levels and other blood level traits. About 3.5% of individuals harbor deleterious variants in 76 clinically actionable genes. The DiscovEHR data set provides a blueprint for large-scale precision medicine initiatives and genomics-guided therapeutic discovery.


Assuntos
Prestação Integrada de Cuidados de Saúde , Doença/genética , Registros Eletrônicos de Saúde , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Adulto , Desenho de Fármacos , Frequência do Gene , Genômica , Humanos , Hipolipemiantes/farmacologia , Mutação INDEL , Lipídeos/sangue , Terapia de Alvo Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA