Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(20): e2400062, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805644

RESUMO

Covalent adaptable crosslinks, such as the alkyl-hydrazone, endow hydrogels with unique viscoelastic properties applicable to cell delivery and bioink systems. However, the alkyl-hydrazone crosslink lacks stability in biologically relevant environments. Furthermore, when formed with biopolymers such as hyaluronic acid (HA), low molecular weight polymers (<60 kDa), or low polymer content (<2 wt%) hydrogels are typically employed as entanglements reduce injectability. Here, a high molecular weight (>60 kDa) HA alkyl-hydrazone crosslinked hydrogel is modified with benzaldehyde-poly(ethylene glycol)3-azide to incorporate azide functional groups. By reacting azide-modified HA with a multi-arm poly(ethylene glycol) (PEG) functionalized with bicyclononyne, stabilizing triazole bonds are formed through strain-promoted azide-alkyne cycloaddition (SPAAC). Increasing the fraction of triazole bonds within the hydrogel network from 0% to 12% SPAAC substantially increases stability. The slow gelation kinetics of the SPAAC reaction in the 12% SPAAC hydrogel enables transient self-healing properties and a similar extrusion force as the 0% SPAAC hydrogel. Methyl-PEG4-hydrazide is then introduced to further slowdown network evolution, which temporarily lowers the extrusion force, improves printability, and increases post-extrusion mesenchymal stem cell viability and function in the 12% SPAAC hydrogel. This work demonstrates improved stability and temporal injectability of high molecular weight HA-PEG hydrogels for extrusion-based printing and cell delivery.


Assuntos
Ácido Hialurônico , Hidrazonas , Hidrogéis , Células-Tronco Mesenquimais , Polietilenoglicóis , Triazóis , Hidrogéis/química , Hidrazonas/química , Polietilenoglicóis/química , Ácido Hialurônico/química , Triazóis/química , Células-Tronco Mesenquimais/citologia , Humanos , Animais , Reação de Cicloadição , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química
2.
Adv Healthc Mater ; 11(14): e2200393, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35575970

RESUMO

The extracellular matrix plays a critical role in mechanosensing and thereby influences the secretory properties of bone-marrow-derived mesenchymal stem/stromal cells (MSCs). As a result, interest has grown in the development of biomaterials with tunable properties for the expansion and delivery of MSCs that are used in cell-based therapies. Herein, stress-relaxing hydrogels are synthesized as hybrid networks containing both biopolymer and synthetic macromer components. Hyaluronic acid is functionalized with either aldehyde or hydrazide groups to form covalent adaptable hydrazone networks, which are stabilized by poly(ethylene glycol) functionalized with bicyclononyne and heterobifunctional small molecule crosslinkers containing azide and benzaldehyde moieties. Tuning the composition of these gels allows for controlled variation in the characteristic timescale for stress relaxation and the amount of stress relaxed. Over this compositional space, MSCs are observed to spread in formulations with higher degrees of adaptability, with aspect ratios of 1.60 ± 0.18, and YAP nuclear:cytoplasm ratios of 6.5 ± 1.3. Finally, a maximum MSC pericellular protein thickness of 1.45 ± 0.38 µm occurred in highly stress-relaxing gels, compared to 1.05 ± 0.25 µm in non-adaptable controls. Collectively, this study contributes a new understanding of the role of compositionally defined stress relaxation on MSCs mechanosensing and secretion.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Biopolímeros , Matriz Extracelular , Hidrazonas
3.
Adv Healthc Mater ; 10(7): e2001948, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33594836

RESUMO

The therapeutic benefits of exogenously delivered mesenchymal stromal/stem cells (MSCs) have been largely attributed to their secretory properties. However, clinical translation of MSC-based therapies is hindered due to loss of MSC regenerative properties during large-scale expansion and low survival/retention post-delivery. These limitations might be overcome by designing hydrogel culture platforms to modulate the MSC microenvironment. Hydrogel systems could be engineered to i) promote MSC proliferation and maintain regenerative properties (i.e., stemness and secretion) during ex vivo expansion, ii) improve MSC survival, retention, and engraftment in vivo, and/or iii) direct the MSC secretory profile using tailored biochemical and biophysical cues. Herein, it is reviewed how hydrogel material properties (i.e., matrix modulus, viscoelasticity, dimensionality, cell adhesion, and porosity) influence MSC secretion, mediated through cell-matrix and cell-cell interactions. In addition, it is highlighted how biochemical cues (i.e., small molecules, peptides, and proteins) can improve and direct the MSC secretory profile. Last, the authors' perspective is provided on future work toward the understanding of how microenvironmental cues influence the MSC secretome, and designing the next generation of biomaterials, with optimized biophysical and biochemical cues, to direct the MSC secretory profile for improved clinical translation outcomes.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Materiais Biocompatíveis
4.
Protein Eng Des Sel ; 32(1): 41-45, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31297523

RESUMO

User-defined mutagenic libraries are fundamental for applied protein engineering workflows. Here we show that unamplified oligo pools can be used to prepare site saturation mutagenesis libraries from plasmid DNA with near-complete coverage of desired mutations and few off-target mutations. We find that oligo pools yield higher quality libraries when compared to individually synthesized degenerate oligos. We also show that multiple libraries can be multiplexed into a single oligo pool, making preparation of multiple libraries less expensive and more convenient. We provide software for automatic oligo pool design that can generate mutagenic oligos for saturating or focused libraries.


Assuntos
Biblioteca Gênica , Mutagênese Sítio-Dirigida/métodos , Oligodesoxirribonucleotídeos , Engenharia de Proteínas/métodos , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Plasmídeos/química , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA