Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 73(5): 1581-1601, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34910813

RESUMO

C4 photosynthesis concentrates CO2 around Rubisco in the bundle sheath, favouring carboxylation over oxygenation and decreasing photorespiration. This complex trait evolved independently in >60 angiosperm lineages. Its evolution can be investigated in genera such as Flaveria (Asteraceae) that contain species representing intermediate stages between C3 and C4 photosynthesis. Previous studies have indicated that the first major change in metabolism probably involved relocation of glycine decarboxylase and photorespiratory CO2 release to the bundle sheath and establishment of intercellular shuttles to maintain nitrogen stoichiometry. This was followed by selection for a CO2-concentrating cycle between phosphoenolpyruvate carboxylase in the mesophyll and decarboxylases in the bundle sheath, and relocation of Rubisco to the latter. We have profiled 52 metabolites in nine Flaveria species and analysed 13CO2 labelling patterns for four species. Our results point to operation of multiple shuttles, including movement of aspartate in C3-C4 intermediates and a switch towards a malate/pyruvate shuttle in C4-like species. The malate/pyruvate shuttle increases from C4-like to complete C4 species, accompanied by a rise in ancillary organic acid pools. Our findings support current models and uncover further modifications of metabolism along the evolutionary path to C4 photosynthesis in the genus Flaveria.


Assuntos
Flaveria , Flaveria/genética , Flaveria/metabolismo , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Metaboloma , Fotossíntese , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
2.
Plant Biotechnol J ; 19(3): 575-588, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016576

RESUMO

Introduction of a C4 photosynthetic mechanism into C3 crops offers an opportunity to improve photosynthetic efficiency, biomass and yield in addition to potentially improving nitrogen and water use efficiency. To create a two-cell metabolic prototype for an NADP-malic enzyme type C4 rice, we transformed Oryza sativa spp. japonica cultivar Kitaake with a single construct containing the coding regions of carbonic anhydrase, phosphoenolpyruvate (PEP) carboxylase, NADP-malate dehydrogenase, pyruvate orthophosphate dikinase and NADP-malic enzyme from Zea mays, driven by cell-preferential promoters. Gene expression, protein accumulation and enzyme activity were confirmed for all five transgenes, and intercellular localization of proteins was analysed. 13 CO2 labelling demonstrated a 10-fold increase in flux though PEP carboxylase, exceeding the increase in measured in vitro enzyme activity, and estimated to be about 2% of the maize photosynthetic flux. Flux from malate via pyruvate to PEP remained low, commensurate with the low NADP-malic enzyme activity observed in the transgenic lines. Physiological perturbations were minor and RNA sequencing revealed no substantive effects of transgene expression on other endogenous rice transcripts associated with photosynthesis. These results provide promise that, with enhanced levels of the C4 proteins introduced thus far, a functional C4 pathway is achievable in rice.


Assuntos
Oryza , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Oryza/genética , Oryza/metabolismo , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese , Piruvato Ortofosfato Diquinase/genética , Piruvato Ortofosfato Diquinase/metabolismo , Zea mays/metabolismo
3.
J Exp Bot ; 70(20): 5809-5825, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31353406

RESUMO

Metabolite profiles provide a top-down overview of the balance between the reactions in a pathway. We compared Calvin-Benson cycle (CBC) intermediate profiles in different conditions in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) to learn which features of CBC regulation differ and which are shared between these model eudicot and monocot C3 species. Principal component analysis revealed that CBC intermediate profiles follow different trajectories in Arabidopsis and rice as irradiance increases. The balance between subprocesses or reactions differed, with 3-phosphoglycerate reduction being favoured in Arabidopsis and ribulose 1,5-bisphosphate regeneration in rice, and sedoheptulose-1,7-bisphosphatase being favoured in Arabidopsis compared with fructose-1,6-bisphosphatase in rice. Photosynthesis rates rose in parallel with ribulose 1,5-bisphosphate levels in Arabidopsis, but not in rice. Nevertheless, some responses were shared between Arabidopsis and rice. Fructose 1,6-bisphosphate and sedoheptulose-1,7-bisphosphate were high or peaked at very low irradiance in both species. Incomplete activation of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase may prevent wasteful futile cycles in low irradiance. End-product synthesis is inhibited and high levels of CBC intermediates are maintained in low light or in low CO2 in both species. This may improve photosynthetic efficiency in fluctuating irradiance, and facilitate rapid CBC flux to support photorespiration and energy dissipation in low CO2.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/fisiologia , Oryza/metabolismo , Oryza/fisiologia , Fotossíntese/fisiologia , Arabidopsis/genética , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Oryza/genética , Fotossíntese/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia
4.
J Exp Bot ; 70(6): 1843-1858, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30773587

RESUMO

Low atmospheric CO2 in recent geological time led to the evolution of carbon-concentrating mechanisms (CCMs) such as C4 photosynthesis in >65 terrestrial plant lineages. We know little about the impact of low CO2 on the Calvin-Benson cycle (CBC) in C3 species that did not evolve CCMs, representing >90% of terrestrial plant species. Metabolite profiling provides a top-down strategy to investigate the operational balance in a pathway. We profiled CBC intermediates in a panel of C4 (Zea mays, Setaria viridis, Flaveria bidentis, and F. trinervia) and C3 species (Oryza sativa, Triticium aestivum, Arabidopsis thaliana, Nicotiana tabacum, and Manihot esculenta). Principal component analysis revealed differences between C4 and C3 species that were driven by many metabolites, including lower ribulose 1,5-bisphosphate in C4 species. Strikingly, there was also considerable variation between C3 species. This was partly due to different chlorophyll and protein contents, but mainly to differences in relative levels of metabolites. Correlation analysis indicated that one contributory factor was the balance between fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase, phosphoribulokinase, and Rubisco. Our results point to the CBC having experienced different evolutionary trajectories in C3 species since the ancestors of modern plant lineages diverged. They underline the need to understand CBC operation in a wide range of species.


Assuntos
Ciclo do Carbono , Magnoliopsida/metabolismo , Fotossíntese , Especificidade da Espécie
5.
J Exp Bot ; 67(6): 1819-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26792489

RESUMO

During photosynthesis of higher plants, absorbed light energy is converted into chemical energy that, in part, is accumulated in the form of transitory starch within chloroplasts. In the following night, transitory starch is mobilized to sustain the heterotrophic metabolism of the plant. ß-amylases are glucan hydrolases that cleave α-1,4-glycosidic bonds of starch and release maltose units from the non-reducing end of the polysaccharide chain. In Arabidopsis, nocturnal degradation of transitory starch involves mainly ß-amylase-3 (BAM3). A second ß-amylase isoform, ß-amylase-1 (BAM1), is involved in diurnal starch degradation in guard cells, a process that sustains stomata opening. However, BAM1 also contributes to diurnal starch turnover in mesophyll cells under osmotic stress. With the aim of dissecting the role of ß-amylases in osmotic stress responses in Arabidopsis, mutant plants lacking either BAM1 or BAM3 were subject to a mild (150mM mannitol) and prolonged (up to one week) osmotic stress. We show here that leaves of osmotically-stressed bam1 plants accumulated more starch and fewer soluble sugars than both wild-type and bam3 plants during the day. Moreover, bam1 mutants were impaired in proline accumulation and suffered from stronger lipid peroxidation, compared with both wild-type and bam3 plants. Taken together, these data strongly suggest that carbon skeletons deriving from BAM1 diurnal degradation of transitory starch support the biosynthesis of proline required to face the osmotic stress. We propose the transitory-starch/proline interplay as an interesting trait to be tackled by breeding technologies aimingto improve drought tolerance in relevant crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Secas , Prolina/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Amido/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Luz , Peroxidação de Lipídeos/efeitos da radiação , Pressão Osmótica/efeitos da radiação , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas/genética , Solubilidade , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA