Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Int J Syst Evol Microbiol ; 74(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39432413

RESUMO

Acetic acid bacteria - belonging to the Acetobacteraceae family - are found in the gut of many sugar-feeding insects. In this study, six strains have been isolated from the hemipteran leafhopper Euscelidius variegatus. While they exhibit high 16S rRNA gene sequence similarities to uncultured members of the Acetobacteraceae family, they could not be unequivocally assigned to any particular type species. Considering the clonality of the six isolates, the EV16PT strain was used as a representative of this group of isolates. The genome sequence of EV16PT is composed of a 2.388 Mbp chromosome, with a DNA G+C content of 57 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis indicate that EV16PT forms a monophyletic clade with the uncultivated endosymbiont of Diaphorina citri, the Candidatus Kirkpatrickella diaphorinae. Such a phylogenetic clade is positioned between those of Asaia-Swaminathania and Kozakia. The genomic distance metrics based on gene and protein sequences support the proposal that EV16PT is a new species belonging to a yet-undescribed genus. It is a rod-shaped Gram-stain-negative bacterium, strictly aerobic, non-motile, non-spore-forming, showing optimal growth without salt (NaCl) at 30 °C and pH of 6-7. The major quinone is Q10, and the dominant cellular fatty acids (>10%) are C18:l ω7c, C19 : 0 cyclo ω6c, C16 : 0 and C19 : 1 2OH. The polar lipid profile comprises diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, along with unidentified aminophospholipids, glycophospholipids, aminolipids and lipids. Based on a polyphasic approach, including phylogenetic, phylogenomic, genome relatedness, phenotypic and chemotaxonomic characterisations, EV16PT (= KCTC 8296T, = DSM 117028T) is proposed as a representative of a novel species in a novel genus with the proposed name Sorlinia euscelidii gen. nov., sp. nov., in honour of Prof. Claudia Sorlini, an Italian environmental microbiologist at the University of Milan who inspired the research on microbial diversity, including symbiosis in plants and animals.


Assuntos
Acetobacteraceae , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Hemípteros , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , Hemípteros/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Ácidos Graxos/química , DNA Bacteriano/genética , Acetobacteraceae/classificação , Acetobacteraceae/genética , Acetobacteraceae/isolamento & purificação , Genoma Bacteriano , Ácido Acético/metabolismo
2.
Front Microbiol ; 15: 1457854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268528

RESUMO

Introduction: Horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) is one of the primary routes of antimicrobial resistance (AMR) dissemination. In the One Health context, tracking the spread of mobile genetic elements (MGEs) carrying ARGs in agri-food ecosystems is pivotal in understanding AMR diffusion and estimating potential risks for human health. So far, little attention has been devoted to plant niches; hence, this study aimed to evaluate the conjugal transfer of ARGs to the bacterial community associated with the plant rhizosphere, a hotspot for microbial abundance and activity in the soil. We simulated a source of AMR determinants that could enter the food chain via plants through irrigation. Methods: Among the bacterial strains isolated from treated wastewater, the strain Klebsiella variicola EEF15 was selected as an ARG donor because of the relevance of Enterobacteriaceae in the AMR context and the One Health framework. The strain ability to recolonize lettuce, chosen as a model for vegetables that were consumed raw, was assessed by a rifampicin resistant mutant. K. variicola EEF15 was genetically manipulated to track the conjugal transfer of the broad host range plasmid pKJK5 containing a fluorescent marker gene to the natural rhizosphere microbiome obtained from lettuce plants. Transconjugants were sorted by fluorescent protein expression and identified through 16S rRNA gene amplicon sequencing. Results and discussion: K. variicola EEF15 was able to colonize the lettuce rhizosphere and inhabit its leaf endosphere 7 days past bacterial administration. Fluorescence stereomicroscopy revealed plasmid transfer at a frequency of 10-3; cell sorting allowed the selection of the transconjugants. The conjugation rates and the strain's ability to colonize the plant rhizosphere and leaf endosphere make strain EEF15::lacIq-pLpp-mCherry-gmR with pKJK5::Plac::gfp an interesting candidate to study ARG spread in the agri-food ecosystem. Future studies taking advantage of additional environmental donor strains could provide a comprehensive snapshot of AMR spread in the One Health context.

3.
Front Microbiol ; 15: 1436122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113842

RESUMO

Introduction: Constructed wetlands (CWs) are nature-based solutions for wastewater treatment where the root system microbiome plays a key role in terms of nutrient and pollutant removal. Nonetheless, little is known on plant-microbe interactions and bacterial population selection in CWs, which are mostly characterized in terms of engineering aspects. Methods: Here, cultivation-independent and cultivation-based analyses were applied to study the bacterial communities associated to the root systems of Phragmites australis and Typha domingensis co-occurring in the same cell of a CW receiving primary treated wastewaters. Results and discussion: Two endophytic bacteria collections (n = 156) were established aiming to find novel strains for microbial-assisted phytodepuration, however basing on their taxonomy the possible use of these strains was limited by their low degrading potential and/or for risks related to the One-Health concept. A sharp differentiation arose between the P. australis and T. domingensis collections, mainly represented by lactic acid bacteria (98%) and Enterobacteriaceae (69%), respectively. Hence, 16S rRNA amplicon sequencing was used to disentangle the microbiome composition in the root system fractions collected at increasing distance from the root surface. Both the fraction type and the plant species were recognized as drivers of the bacterial community structure. Moreover, differential abundance analysis revealed that, in all fractions, several bacteria families were significantly and differentially enriched in P. australis or in T. domingensis. CWs have been also reported as interesting options for the removal of emerging contaminants (e.g, antibiotic resistance genes, ARGs). In this study, ARGs were mostly present in the rhizosphere of both plant species, compared to the other analyzed fractions. Notably, qPCR data showed that ARGs (i.e., ermB, bla TEM, tetA) and intl1 gene (integrase gene of the class 1 integrons) were significantly higher in Phragmites than Typha rhizospheres, suggesting that macrophyte species growing in CWs can display a different ability to remove ARGs from wastewater. Overall, the results suggest the importance to consider the plant-microbiome interactions, besides engineering aspects, to select the most suitable species when designing phytodepuration systems.

4.
Front Plant Sci ; 15: 1429096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036359

RESUMO

Introduction: The importance of plant rhizodeposition to sustain microbial growth and induce xenobiotic degradation in polluted environments is increasingly recognized. Methods: Here the "cry-for-help" hypothesis, consisting in root chemistry remodeling upon stress, was investigated in the presence of polychlorinated biphenyls (PCBs), highly recalcitrant and phytotoxic compounds, highlighting its role in reshaping the nutritional and signaling features of the root niche to accommodate PCB-degrading microorganisms. Results: Arabidopsis exposure to 70 µM PCB-18 triggered plant-detrimental effects, stress-related traits, and PCB-responsive gene expression, reproducing PCB phytotoxicity. The root exudates of plantlets exposed for 2 days to the pollutant were collected and characterized through untargeted metabolomics analysis by liquid chromatography-mass spectrometry. Principal component analysis disclosed a different root exudation fingerprint in PCB-18-exposed plants, potentially contributing to the "cry-for-help" event. To investigate this aspect, the five compounds identified in the exudate metabolomic analysis (i.e., scopoletin, N-hydroxyethyl-ß-alanine, hypoxanthine, L-arginyl-L-valine, and L-seryl-L-phenylalanine) were assayed for their influence on the physiology and functionality of the PCB-degrading strains Pseudomonas alcaliphila JAB1, Paraburkholderia xenovorans LB400, and Acinetobacter calcoaceticus P320. Scopoletin, whose relative abundance decreased in PCB-18-stressed plant exudates, hampered the growth and proliferation of strains JAB1 and P320, presumably due to its antimicrobial activity, and reduced the beneficial effect of Acinetobacter P320, which showed a higher degree of growth promotion in the scopoletin-depleted mutant f6'h1 compared to Arabidopsis WT plants exposed to PCB. Nevertheless, scopoletin induced the expression of the bph catabolic operon in strains JAB1 and LB400. The primary metabolites hypoxanthine, L-arginyl-L-valine, and L-seryl-L-phenylalanine, which increased in relative abundance upon PCB-18 stress, were preferentially used as nutrients and growth-stimulating factors by the three degrading strains and showed a variable ability to affect rhizocompetence traits like motility and biofilm formation. Discussion: These findings expand the knowledge on PCB-triggered "cry-for-help" and its role in steering the PCB-degrading microbiome to boost the holobiont fitness in polluted environments.

5.
J Hazard Mater ; 475: 134885, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876022

RESUMO

Aquatic ecosystems are crucial in the antimicrobial resistance cycle. While intracellular DNA has been extensively studied to understand human activity's impact on antimicrobial resistance gene (ARG) dissemination, extracellular DNA is frequently overlooked. This study examines the effect of anthropogenic water pollution on microbial community diversity, the resistome, and ARG dissemination. We analyzed intracellular and extracellular DNA from wastewater treatment plant effluents and lake surface water by shotgun sequencing. We also conducted experiments to evaluate anthropogenic pollution's effect on transforming extracellular DNA (using Gfp-plasmids carrying ARGs) within a natural microbial community. Chemical analysis showed treated wastewater had higher anthropogenic pollution-related parameters than lake water. The richness of microbial community, antimicrobial resistome, and high-risk ARGs was greater in treated wastewaters than in lake waters both for intracellular and extracellular DNA. Except for the high-risk ARGs, richness was significantly higher in intracellular than in extracellular DNA. Several ARGs were associated with mobile genetic elements and located on plasmids. Furthermore, Gfp-plasmid transformation within a natural microbial community was enhanced by anthropogenic pollution levels. Our findings underscore anthropogenic pollution's pivotal role in shaping microbial communities and their antimicrobial resistome. Additionally, it may facilitate ARG dissemination through extracellular DNA plasmid uptake.


Assuntos
Águas Residuárias , Águas Residuárias/microbiologia , Resistência Microbiana a Medicamentos/genética , Lagos/microbiologia , Genes Bacterianos/efeitos dos fármacos , Poluição da Água , Microbiologia da Água , Microbiota/efeitos dos fármacos , Antibacterianos/farmacologia , Plasmídeos/genética , Farmacorresistência Bacteriana/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação
6.
Int Microbiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867105

RESUMO

Hydrocarbon and heavy metal pollution are amongst the most severe and prevalent environmental problems due to their toxicity and persistence. Bioremediation using microorganisms is considered one of the most effective ways to treat polluted sites. In the present study, we unveil the bioremediation potential of Brucella pituitosa strain BU72. Besides its ability to grow on multiple hydrocarbons as the sole carbon source and highly tolerant to several heavy metals, BU72 produces different exopolysaccharide-based surfactants (EBS) when grown with glucose or with crude oil as sole carbon source. These EBS demonstrated particular and specific functional groups as determined by Fourier transform infrared (FTIR) spectral analysis that showed a strong absorption peak at 3250 cm-1 generated by the -OH group for both EBS. The FTIR spectra of the produced EBS revealed major differences in functional groups and protein content. To better understand the EBS production coupled with the degradation of hydrocarbons and heavy metal resistance, the genome of strain BU72 was sequenced. Annotation of the genome revealed multiple genes putatively involved in EBS production pathways coupled with resistance to heavy metals genes such as arsenic tolerance and cobalt-zinc-cadmium resistance. The genome sequence analysis showed the potential of BU72 to synthesise secondary metabolites and the presence of genes involved in plant growth promotion. Here, we describe the physiological, metabolic, and genomic characteristics of Brucella pituitosa strain BU72, indicating its potential as a bioremediation agent.

7.
Microbiome ; 12(1): 47, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454513

RESUMO

BACKGROUND: Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS: To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION: The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.


Assuntos
Anti-Infecciosos , Microbiota , Rodófitas , Alga Marinha , Rodófitas/genética , Rodófitas/metabolismo , Microbiota/genética , Bactérias/genética , Bactérias/metabolismo , Alga Marinha/genética , Alga Marinha/metabolismo , Metagenoma , Halogênios/metabolismo
8.
Front Plant Sci ; 15: 1325048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371405

RESUMO

Introduction: Flavonoids are among the main plant root exudation components, and, in addition to their role in symbiosis, they can broadly affect the functionality of plant-associated microbes: in polluted environments, for instance, flavonoids can induce the expression of the enzymatic degradative machinery to clean-up soils from xenobiotics like polychlorinated biphenyls (PCBs). However, their involvement in root community recruitment and assembly involving non-symbiotic beneficial interactions remains understudied and may be crucial to sustain the holobiont fitness under PCB stress. Methods: By using a set of model pure flavonoid molecules and a natural blend of root exudates (REs) with altered flavonoid composition produced by Arabidopsis mutant lines affected in flavonoid biosynthesis and abundance (null mutant tt4, flavonoid aglycones hyperproducer tt8, and flavonoid conjugates hyperaccumulator ttg), we investigated flavonoid contribution in stimulating rhizocompetence traits and the catabolic potential of the model bacterial strain for PCB degradation Paraburkholderia xenovorans LB400. Results: Flavonoids influenced the traits involved in bacterial recruitment in the rhizoplane by improving chemotaxis and motility responses, by increasing biofilm formation and by promoting the growth and activation of the PCB-degradative pathway of strain LB400, being thus potentially exploited as carbon sources, stimulating factors and chemoattractant molecules. Indeed, early rhizoplane colonization was favored in plantlets of the tt8 Arabidopsis mutant and reduced in the ttg line. Bacterial growth was promoted by the REs of mutant lines tt4 and tt8 under control conditions and reduced upon PCB-18 stress, showing no significant differences compared with the WT and ttg, indicating that unidentified plant metabolites could be involved. PCB stress presumably altered the Arabidopsis root exudation profile, although a sudden "cry-for-help" response to recruit strain LB400 was excluded and flavonoids appeared not to be the main determinants. In the in vitro plant-microbe interaction assays, plant growth promotion and PCB resistance promoted by strain LB400 seemed to act through flavonoid-independent mechanisms without altering bacterial colonization efficiency and root adhesion pattern. Discussions: This study further contributes to elucidate the vast array of functions provided by flavonoids in orchestrating the early events of PCB-degrading strain LB400 recruitment in the rhizosphere and to support the holobiont fitness by stimulating the catabolic machinery involved in xenobiotics decomposition and removal.

9.
Appl Environ Microbiol ; 90(2): e0207823, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289136

RESUMO

Engineering the plant microbiome with beneficial endophytic bacteria can improve the growth, health, and productivity of the holobiont. Here, we administered two beneficial bacterial strains, Kosakonia VR04 sp. and Rhizobium GR12 sp., to micropropagated grapevine cuttings obtained via somatic embryogenesis. While both strains colonized the plant endosphere, only Rhizobium GR12 sp. increased root biomass under nutritional-deficit conditions, as supported by the plant growth promotion traits detected in its genome. Phylogenetic and co-occurrence analyses revealed that the plant native bacterial community, originally dominated by Streptococcaceae and Micrococcaceae, dramatically changed depending on the inoculation treatments, as invading strains differently affected the relative abundance and the interactions of pre-existing taxa. After 30 days of plantlets' growth, Pantoea became a predominant taxon, and considering untreated plantlets as references, Rhizobium sp. GR12 showed a minor impact on the endophytic bacterial community. On the other hand, Kosakonia sp. VR04 caused a major change in community composition, suggesting an opportunistic colonization pattern. Overall, the results corroborate the importance of preserving the native endophytic community structure and functions during plant microbiome engineering.IMPORTANCEA better comprehension of bacterial colonization processes and outcomes could benefit the use of plant probiotics in the field. In this study, we applied two different beneficial bacteria to grapevine micropropagated plantlets and described how the inoculation of these strains impacts endophytic microbiota assembly. We showed that under nutritional deficit conditions, the response of the receiving endophytic bacterial communities to the invasion of the beneficial strains related to the manifestation of plant growth promotion effects by the inoculated invading strains. Rhizobium sp. GR12 was able to preserve the native microbiome structure despite its effective colonization, highlighting the importance of the plant-endophyte associations for the holobiont performance. Moreover, our approach showed that the use of micropropagated plantlets could be a valuable strategy to study the interplay among the plant, its native microbiota, and the invader on a wider portfolio of species besides model plants, facilitating the application of new knowledge in agriculture.


Assuntos
Inoculantes Agrícolas , Filogenia , Raízes de Plantas/microbiologia , Bactérias/genética , Enterobacteriaceae , Endófitos/fisiologia
10.
Microorganisms ; 10(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36557733

RESUMO

Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.

11.
Environ Microbiol ; 24(12): 5998-6016, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36325730

RESUMO

The pedogenesis from the mineral substrate released upon glacier melting has been explained with the succession of consortia of pioneer microorganisms, whose structure and functionality are determined by the environmental conditions developing in the moraine. However, the microbiome variability that can be expected in the environmentally heterogeneous niches occurring in a moraine at a given successional stage is poorly investigated. In a 50 m2 area in the forefield of the Lobuche glacier (Himalayas, 5050 m above sea level), we studied six sites of primary colonization presenting different topographical features (orientation, elevation and slope) and harbouring greyish/dark biological soil crusts (BSCs). The spatial vicinity of the sites opposed to their topographical differences, allowed us to examine the effect of environmental conditions independently from the time of deglaciation. The bacterial microbiome diversity and their co-occurrence network, the bacterial metabolisms predicted from 16S rRNA gene high-throughput sequencing, and the microbiome intact polar lipids were investigated in the BSCs and the underlying sediment deep layers (DLs). Different bacterial microbiomes inhabited the BSCs and the DLs, and their composition varied among sites, indicating a niche-specific role of the micro-environmental conditions in the bacterial communities' assembly. In the heterogeneous sediments of glacier moraines, physico-chemical and micro-climatic variations at the site-spatial scale are crucial in shaping the microbiome microvariability and structuring the pioneer bacterial communities during pedogenesis.


Assuntos
Camada de Gelo , Microbiologia do Solo , Camada de Gelo/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Solo/química
12.
Sci Rep ; 12(1): 19232, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357494

RESUMO

Polychlorinated biphenyl (PCB)-contaminated soils represent a major treat for ecosystems health. Plant biostimulation of autochthonous microbial PCB degraders is a way to restore polluted sites where traditional remediation techniques are not sustainable, though its success requires the understanding of site-specific plant-microbe interactions. In an historical PCB contaminated soil, we applied DNA stable isotope probing (SIP) using 13C-labeled 4-chlorobiphenyl (4-CB) and 16S rRNA MiSeq amplicon sequencing to determine how the structure of total and PCB-degrading bacterial populations were affected by different treatments: biostimulation with Phalaris arundinacea subjected (PhalRed) or not (Phal) to a redox cycle and the non-planted controls (Bulk and BulkRed). Phal soils hosted the most diverse community and plant biostimulation induced an enrichment of Actinobacteria. Mineralization of 4-CB in SIP microcosms varied between 10% in Bulk and 39% in PhalRed soil. The most abundant taxa deriving carbon from PCB were Betaproteobacteria and Actinobacteria. Comamonadaceae was the family most represented in Phal soils, Rhodocyclaceae and Nocardiaceae in non-planted soils. Planted soils subjected to redox cycle enriched PCB degraders affiliated to Pseudonocardiaceae, Micromonosporaceae and Nocardioidaceae. Overall, we demonstrated different responses of soil bacterial taxa to specific rhizoremediation treatments and we provided new insights into the populations active in PCB biodegradation.


Assuntos
Actinomycetales , Bifenilos Policlorados , Poluentes do Solo , Solo/química , Bifenilos Policlorados/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ecossistema , Biodegradação Ambiental , Bactérias , Plantas/metabolismo , Actinomycetales/genética , Isótopos/metabolismo , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
13.
AMB Express ; 12(1): 98, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895126

RESUMO

Macroalgal surface constitutes a peculiar ecological niche and an advantageous substratum for microorganisms able to degrade the wide diversity of algal glycans. The degrading enzymatic activities of macroalgal epiphytes are of paramount interest for the industrial by-product sector and biomass resource applications. We characterized the polysaccharide hydrolytic profile of bacterial isolates obtained from three macroalgal species: the red macroalgae Asparagopsis taxiformis and Sphaerococcus coronopifolius (Rhodophyceae) and the brown Halopteris scoparia (Phaeophyceae), sampled in South Portugal. Bacterial enrichment cultures supplemented with chlorinated aliphatic compounds, typically released by marine algae, were established using as inoculum the decaying biomass of the three macroalgae, obtaining a collection of 634 bacterial strains. Although collected from the same site and exposed to the same seawater seeding microbiota, macroalgal cultivable bacterial communities in terms of functional and phylogenetic diversity showed host specificity. Isolates were tested for the hydrolysis of starch, pectin, alginate and agar, exhibiting a different hydrolytic potential according to their host: A. taxiformis showed the highest percentage of active isolates (91%), followed by S. coronopifolius (54%) and H. scoparia (46%). Only 30% of the isolates were able to degrade starch, while the other polymers were degraded by 55-58% of the isolates. Interestingly, several isolates showed promiscuous capacities to hydrolyze more than one polysaccharide. The isolate functional fingerprint was statistically correlated to bacterial phylogeny, host species and enrichment medium. In conclusion, this work depicts macroalgae as holobionts with an associated microbiota of interest for blue biotechnologies, suggesting isolation strategies and bacterial targets for polysaccharidases' discovery.

14.
Microbiol Res ; 263: 127144, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908425

RESUMO

Studies about biodegradation potential in soils often refer to artificially contaminated and simplified systems, overlooking the complexity associated with contaminated sites in a real context. This work aims to provide a holistic view on microbiome assembly and functional diversity in the model site SIN Brescia-Caffaro (Italy), characterized by historical and uneven contamination by organic and inorganic compounds. Here, physical and chemical analyses and microbiota characterization were applied on one-hundred-twenty-seven soil samples to unravel the environmental factors driving bacterial community assembly and biodegradation potential in three former agricultural fields. Chemical analyses showed a patchy distribution of metals, metalloids and polychlorinated biphenyls (PCB) and allowed soil categorization according to depth and area of collections. Likewise, the bacterial community structure, described by molecular fingerprinting and 16S rRNA gene analyses, was significantly different according to collection site and depth. Pollutant concentrations (i.e., hexachloro-biphenyls, arsenic and mercury), nitrogen content and parameters related to soil texture were identified as main drivers of microbiota assembly, being significantly correlated to bacterial community composition. Moreover, bacteria putatively involved in the aerobic degradation of PCBs were enriched over the total bacterial community in topsoils, where the highest activity was recorded using fluorescein hydrolysis as proxy. Metataxonomic analyses revealed the presence of bacteria having metabolic pathways related to PCB degradation and tolerance to heavy metals and metalloids in the topsoil samples collected in all areas. Overall, the provided dissection of soil microbiota structure and its degradation potential in the SIN Brescia-Caffaro can contribute to target specific areas for rhizoremediation implementation. Metagenomics studies could be implemented in the future to understand if specific degradative pathways are present in historically polluted sites characterized by the co-occurrence of multiple classes of contaminants.


Assuntos
Metaloides , Bifenilos Policlorados , Poluentes do Solo , Biodegradação Ambiental , Metaloides/análise , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
15.
Environ Microbiome ; 17(1): 14, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365219

RESUMO

BACKGROUND: In hot deserts daily/seasonal fluctuations pose great challenges to the resident organisms. However, these extreme ecosystems host unique microenvironments, such as the rhizosheath-root system of desert speargrasses in which biological activities and interactions are facilitated by milder conditions and reduced fluctuations. Here, we examined the bacterial microbiota associated with this structure and its surrounding sand in the desert speargrass Stipagrostis pungens under the contrasting environmental conditions of summer and winter in the Sahara Desert. RESULTS: The belowground rhizosheath-root system has higher nutrient and humidity contents, and cooler temperatures than the surrounding sand. The plant responds to the harsh environmental conditions of the summer by increasing the abundance and diversity of extracellular polymeric substances (EPS) compared to the winter. On the contrary, the bacterial community associated with the rhizosheath-root system and its interactome remain stable and, unlike the bulk sand, are unaffected by the seasonal environmental variations. The rhizosheath-root system bacterial communities are consistently dominated by Actinobacteria and Alphaproteobacteria and form distinct bacteria communities from those of bulk sand in the two seasons. The microbiome-stabilization mediated by the plant host acts to consistently retain beneficial bacteria with multiple plant growth promoting functions, including those capable to produce EPS, which increase the sand water holding capacity ameliorating the rhizosheath micro-environment. CONCLUSIONS: Our results reveal the capability of plants in desert ecosystems to stabilize their below ground microbial community under seasonal contrasting environmental conditions, minimizing the heterogeneity of the surrounding bulk sand and contributing to the overall holobiont resilience under poly-extreme conditions.

16.
Appl Environ Microbiol ; 88(9): e0252221, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35416683

RESUMO

This study shows that Escherichia coli can be temporarily enriched in zooplankton under natural conditions and that these bacteria can belong to different phylogroups and sequence types (STs), including environmental, clinical, and animal isolates. We isolated 10 E. coli strains and sequenced the genomes of two of them. Phylogenetically, the two isolates were closer to strains isolated from poultry meat than to freshwater E. coli, albeit their genomes were smaller than those of the poultry isolates. After isolation and fluorescent protein tagging of strains ED1 and ED157, we show that Daphnia sp. can take up these strains and release them alive again, thus becoming a temporary host for E. coli. In a chemostat experiment, we show that this association does not prolong bacterial long-term survival, but at low abundances it also does not significantly reduce bacterial numbers. We demonstrate that E. coli does not belong to the core microbiota of Daphnia, suffers from competition by the natural Daphnia microbiota, but can profit from its carapax to survive in water. All in all, this study suggests that the association of E. coli with Daphnia is only temporary, but the cells are viable therein, and this might allow encounters with other bacteria for genetic exchange and potential genomic adaptation to the freshwater environment. IMPORTANCE The contamination of freshwater with feces-derived bacteria is a major concern regarding drinking water acquisition and recreational activities. Ecological interactions promoting their persistence are still very scarcely studied. This study, which analyses the survival of E. coli in the presence of zooplankton, is thus of ecological and water safety relevance.


Assuntos
Água Potável , Escherichia coli , Animais , Bactérias , Daphnia/microbiologia , Escherichia coli/genética , Fezes/microbiologia , Água Doce/microbiologia , Zooplâncton/microbiologia
17.
Appl Environ Microbiol ; 88(6): e0253721, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138928

RESUMO

Endophytic bacteria are key members of the plant microbiome, which phylogenetic diversity has been widely described through next-generation sequencing technologies in the last decades. On the other side, a synopsis of culturable plant endophytic bacteria is still lacking in the literature. However, culturability is necessary for biotechnology innovations related to sustainable agriculture, such as biofertilizer and biostimulant agents' development. In this review, 148 scientific papers were analyzed to establish a large data set of cultured endophytic bacteria, reported at the genus level, inhabiting different compartments of wild and farmed plants, sampled around the world from different soil types and isolated using various growth media. To the best of our knowledge, this work provides the first overview of the current repertoire of cultured plant endophytic bacteria. Results indicate the presence of a recurrent set of culturable bacterial genera regardless of factors known to influence the plant bacterial community composition and the growth media used for the bacterial isolation. Moreover, a wide variety of bacterial genera that are currently rarely isolated from the plant endosphere was identified, demonstrating that culturomics can catch previously uncultured bacteria from the plant microbiome, widening the panorama of strains exploitable to support plant holobiont health and production.


Assuntos
Bactérias , Microbiota , Endófitos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S
18.
Microbiol Spectr ; 10(1): e0158021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985334

RESUMO

Stress-associated dysbiosis of microbiome can have several configurations that, under an energy landscape conceptual framework, can change from one configuration to another due to different alternating selective forces. It has been proposed-according to the Anna Karenina Principle-that in stressed individuals the microbiome are more dispersed (i.e., with a higher within-beta diversity), evidencing the grade of dispersion as indicator of microbiome dysbiosis. We hypothesize that although dysbiosis leads to different microbial communities in terms of beta diversity, these are not necessarily differently dispersed (within-beta diversity), but they form disrupted networks that make them less resilient to stress. To test our hypothesis, we select nutrient restriction (NR) stress that impairs host fitness but does not introduce overt microbiome selectors, such as toxic compounds and pathogens. We fed the polyphagous black soldier fly, Hermetia illucens, with two NR diets and a control full-nutrient (FN) diet. NR diets were dysbiotic because they strongly affected insect growth and development, inducing significant microscale changes in physiochemical conditions of the gut compartments. NR diets established new configurations of the gut microbiome compared to FN-fed guts but with similar dispersion. However, these new configurations driven by the deterministic changes induced by NR diets were reflected in rarefied, less structured, and less connected bacterial interactomes. These results suggested that while the dispersion cannot be considered a consistent indicator of the unhealthy state of dysbiotic microbiomes, the capacity of the community members to maintain network connections and stability can be an indicator of the microbial dysbiotic conditions and their incapacity to sustain the holobiont resilience and host homeostasis. IMPORTANCE Changes in diet play a role in reshaping the gut microbiome in animals, inducing dysbiotic configurations of the associated microbiome. Although studies have reported on the effects of specific nutrient contents on the diet, studies regarding the conditions altering the microbiome configurations and networking in response to diet changes are limited. Our results showed that nutrient poor diets determine dysbiotic states of the host with reduction of insect weight and size, and increase of the times for developmental stage. Moreover, the poor nutrient diets lead to changes in the compositional diversity and network interaction properties of the gut microbial communities. Our study adds a new component to the understanding of the ecological processes associated with dysbiosis, by disentangling consequences of diets on microbiome dysbiosis that is manifested with the disruption of microbiome networking properties rather than changes in microbiome dispersion and beta diversity.


Assuntos
Ração Animal/análise , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Nutrientes/metabolismo , Simuliidae/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Nutrientes/análise , Simuliidae/crescimento & desenvolvimento , Simuliidae/metabolismo
19.
Environ Microbiol ; 23(10): 6275-6291, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34490977

RESUMO

Aridity negatively affects the diversity and abundance of edaphic microbial communities and their multiple ecosystem services, ultimately impacting vegetation productivity and biotic interactions. Investigation about how plant-associated microbial communities respond to increasing aridity is of particular importance, especially in light of the global climate change predictions. To assess the effect of aridity on plant associated bacterial communities, we investigated the diversity and co-occurrence of bacteria associated with the bulk soil and the root system of olive trees cultivated in orchards located in higher, middle and lower arid regions of Tunisia. The results indicated that the selective process mediated by the plant root system is amplified with the increment of aridity, defining distinct bacterial communities, dominated by aridity-winner and aridity-loser bacteria negatively and positively correlated with increasing annual rainfall, respectively. Aridity regulated also the co-occurrence interactions among bacteria by determining specific modules enriched with one of the two categories (aridity-winners or aridity-losers), which included bacteria with multiple PGP functions against aridity. Our findings provide new insights into the process of bacterial assembly and interactions with the host plant in response to aridity, contributing to understand how the increasing aridity predicted by climate changes may affect the resilience of the plant holobiont.


Assuntos
Ecossistema , Olea , Bactérias/genética , Clima Desértico , Solo , Microbiologia do Solo
20.
Front Microbiol ; 12: 675552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211447

RESUMO

Global population growth and climate change raise a challenge to agriculture, which, combined with the issues concerning the use of chemical fertilizers, have generated increasing attention in the use of plant-associated bacteria as a sustainable strategy in agri-food systems. The objective of this study is to evaluate the ability of five bacterial strains, previously isolated from the rhizosphere or endosphere of plants adapted to harsh environmental conditions, to act as potential plant biofertilizers in different conditions of water availability. The strain biosafety for a deliberate environmental release was investigated through a literature survey and antibiotic resistance testing. The selected strains were first characterized for their plant growth-promoting (PGP) and rhizocompetence-related traits through in vitro assays and then on short-term in vivo experiments on tomato plants. A long-term greenhouse experiment was further conducted to monitor the PGP effect of the bacteria during the entire life cycle of tomato plants subjected to full irrigation or to severe water deficit conditions, aiming to assess their actual effect on plant productivity, which is the ultimate target of the agricultural sector. Some of the strains showed a potential in improving water use efficiency and mitigating plant water stress. Under severe irrigation deficit, four of the tested strains, Micrococcus yunnanensis M1, Bacillus simplex RP-26, Pseudomonas stutzeri SR7-77, and Paenarthrobacter nitroguajacolicus 2-50, significantly increased the number of productive plants in comparison to non-bacterized control ones. Two of them, Bacillus simplex RP-26 and Paenarthrobacter nitroguajacolicus 2-50, demonstrated also, under full irrigation, to significantly improve the water productivity in comparison with non-bacterized plants. Despite all the strains showed promising PGP potential in short-term assays, the positive effect of the bacterial inoculants on plant physiology and fruit yield was observed in some cases but never corroborated by statistical significance. These results highlight the importance of performing long-term in vivo experiments to define the real PGP ability of a bacterial inoculant to positively impact plant production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA