Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 15(1): 49, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568899

RESUMO

BACKGROUND: Enzymatic hydrolysis of lignocellulosic biomass into platform sugars can be enhanced by the addition of accessory enzymes, such as xylanases. Lignin from steam pretreated biomasses is known to inhibit enzymes by non-productively binding enzymes and limiting access to cellulose. The effect of enzymatically isolated lignin on the hydrolysis of xylan by four glycoside hydrolase (GH) family 11 xylanases was studied. Two xylanases from the mesophilic Trichoderma reesei, TrXyn1, TrXyn2, and two forms of a thermostable metagenomic xylanase Xyl40 were compared. RESULTS: Lignin isolated from steam pretreated spruce decreased the hydrolysis yields of xylan for all the xylanases at 40 and 50 °C. At elevated hydrolysis temperature of 50 °C, the least thermostable xylanase TrXyn1 was most inhibited by lignin and the most thermostable xylanase, the catalytic domain (CD) of Xyl40, was least inhibited by lignin. Enzyme activity and binding to lignin were studied after incubation of the xylanases with lignin for up to 24 h at 40 °C. All the studied xylanases bound to lignin, but the thermostable xylanases retained 22-39% of activity on the lignin surface for 24 h, whereas the mesophilic T. reesei xylanases become inactive. Removing of N-glycans from the catalytic domain of Xyl40 increased lignin inhibition in hydrolysis of xylan when compared to the glycosylated form. By comparing the 3D structures of these xylanases, features contributing to the increased thermal stability of Xyl40 were identified. CONCLUSIONS: High thermal stability of xylanases Xyl40 and Xyl40-CD enabled the enzymes to remain partially active on the lignin surface. N-glycosylation of the catalytic domain of Xyl40 increased the lignin tolerance of the enzyme. Thermostability of Xyl40 was most likely contributed by a disulphide bond and salt bridge in the N-terminal and α-helix regions.

2.
J Basic Microbiol ; 60(11-12): 971-982, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33103248

RESUMO

Endo-ß-xylanases are hemicellulases involved in the conversion of xylans in plant biomass. Here, we report a novel acidophilic ß-xylanase (ScXynA) with high transglycosylation abilities that was isolated from the filamentous fungus Scytalidium candidum 3C. ScXynA was identified as a glycoside hydrolase family 10 (GH10) dimeric protein, with a molecular weight of 38 ± 5 kDa per subunit. The enzyme catalyzed the hydrolysis of different xylans under acidic conditions and was stable in the pH range 2.6-4.5. The kinetic parameters of ScXynA were determined in hydrolysis reactions with p-nitrophenyl-ß-d-cellobioside (pNP-ß-Cel) and p-nitrophenyl-ß-d-xylobioside (pNP-ß-Xyl2 ), and kcat /Km was found to be 0.43 ± 0.02 (s·mM)-1 and 57 ± 3 (s·mM)-1 , respectively. In the catalysis of the transglycosylation o-nitrophenyl-ß-d-xylobioside (oNP-ß-Xyl2 ) acted both as a donor and an acceptor, resulting in the efficient production of o-nitrophenyl xylooligosaccharides, with a degree of polymerization of 3-10 and o-nitrophenyl-ß-d-xylotetraose (oNP-ß-Xyl4 ) as the major product (18.5% yield). The modeled ScXynA structure showed a favorable position for ligand entry and o-nitrophenyl group accommodation in the relatively open -3 subsite, while the cleavage site was covered with an extended loop. These structural features provide favorable conditions for transglycosylation with oNP-ß-Xyl2 . The acidophilic properties and high transglycosylation activity make ScXynA a suitable choice for various biotechnological applications, including the synthesis of valuable xylooligosaccharides.


Assuntos
Ascomicetos/enzimologia , Endo-1,4-beta-Xilanases/metabolismo , Glucuronatos/metabolismo , Oligossacarídeos/metabolismo , Catálise , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Peso Molecular , Multimerização Proteica , Especificidade por Substrato , Temperatura , Xilanos/metabolismo
3.
Biotechnol Biofuels ; 12: 235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31624497

RESUMO

BACKGROUND: Enzyme-aided valorization of lignocellulose represents a green and sustainable alternative to the traditional chemical industry. The recently discovered lytic polysaccharide monooxygenases (LPMOs) are important components of the state-of-the art enzyme cocktails for cellulose conversion. Yet, these monocopper enzymes are poorly characterized in terms of their kinetics, as exemplified by the growing evidence for that H2O2 may be a more efficient co-substrate for LPMOs than O2. LPMOs need external electron donors and one key question of relevance for bioprocess development is whether the required reducing power may be provided by the lignocellulosic substrate. RESULTS: Here, we show that the liquid fraction (LF) resulting from hydrothermal pretreatment of wheat straw supports LPMO activity on both chitin and cellulose. The initial, transient activity burst of the LPMO reaction was caused by the H2O2 present in the LF before addition of LPMO, while the steady-state rate of LPMO reaction was limited by the LPMO-independent production of H2O2 in the LF. H2O2 is an intermediate of LF oxidation as evidenced by a slow H2O2 accumulation in LF, despite high H2O2 production rates. This H2O2 scavenging ability of LF is important since high concentrations of H2O2 may lead to irreversible inactivation of LPMOs. CONCLUSIONS: Our results support the growing understanding that fine-tuned control over the rates of H2O2 production and consumption in different, enzymatic and non-enzymatic reactions is essential for harnessing the full catalytic potential of LPMOs in lignocellulose valorization.

4.
Biotechnol Biofuels ; 11: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29344086

RESUMO

BACKGROUND: The ascomycete fungus Trichoderma reesei is the predominant source of enzymes for industrial conversion of lignocellulose. Its glycoside hydrolase family 7 cellobiohydrolase (GH7 CBH) TreCel7A constitutes nearly half of the enzyme cocktail by weight and is the major workhorse in the cellulose hydrolysis process. The orthologs from Trichoderma atroviride (TatCel7A) and Trichoderma harzianum (ThaCel7A) show high sequence identity with TreCel7A, ~ 80%, and represent naturally evolved combinations of cellulose-binding tunnel-enclosing loop motifs, which have been suggested to influence intrinsic cellobiohydrolase properties, such as endo-initiation, processivity, and off-rate. RESULTS: The TatCel7A, ThaCel7A, and TreCel7A enzymes were characterized for comparison of function. The catalytic domain of TatCel7A was crystallized, and two structures were determined: without ligand and with thio-cellotriose in the active site. Initial hydrolysis of bacterial cellulose was faster with TatCel7A than either ThaCel7A or TreCel7A. In synergistic saccharification of pretreated corn stover, both TatCel7A and ThaCel7A were more efficient than TreCel7A, although TatCel7A was more sensitive to thermal inactivation. Structural analyses and molecular dynamics (MD) simulations were performed to elucidate important structure/function correlations. Moreover, reverse conservation analysis (RCA) of sequence diversity revealed divergent regions of interest located outside the cellulose-binding tunnel of Trichoderma spp. GH7 CBHs. CONCLUSIONS: We hypothesize that the combination of loop motifs is the main determinant for the observed differences in Cel7A activity on cellulosic substrates. Fine-tuning of the loop flexibility appears to be an important evolutionary target in Trichoderma spp., a conclusion supported by the RCA data. Our results indicate that, for industrial use, it would be beneficial to combine loop motifs from TatCel7A with the thermostability features of TreCel7A. Furthermore, one region implicated in thermal unfolding is suggested as a primary target for protein engineering.

5.
Appl Environ Microbiol ; 82(11): 3395-409, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037126

RESUMO

UNLABELLED: Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes commonly employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7A and DpuCel7A, resolved to 2.1 Å and 2.7 Å, respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7ACBM and DpuCel7ACBM, which were recombinantly expressed in T. reesei DdiCel7ACBM and DpuCel7ACBM hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The Ki of cellobiose was significantly higher for DdiCel7ACBM and DpuCel7ACBM than for TreCel7A: 205, 130, and 29 µM, respectively. Taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life. IMPORTANCE: GH7 CBHs are among the most important cellulolytic enzymes both in nature and for emerging industrial applications for cellulose breakdown. Understanding the diversity of these key industrial enzymes is critical to engineering them for higher levels of activity and greater stability. The present work demonstrates that two GH7 CBHs from social amoeba are surprisingly quite similar in structure and activity to the canonical GH7 CBH from the model biomass-degrading fungus T. reesei when tested under equivalent conditions (with added CBM-linker domains) on an industrially relevant substrate.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Dictyostelium/enzimologia , Celulose 1,4-beta-Celobiosidase/genética , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
6.
FEBS J ; 282(23): 4515-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26367132

RESUMO

The ascomycete Geotrichum candidum is a versatile and efficient decay fungus that is involved, for example, in biodeterioration of compact discs; notably, the 3C strain was previously shown to degrade filter paper and cotton more efficiently than several industrial enzyme preparations. Glycoside hydrolase (GH) family 7 cellobiohydrolases (CBHs) are the primary constituents of industrial cellulase cocktails employed in biomass conversion, and feature tunnel-enclosed active sites that enable processive hydrolytic cleavage of cellulose chains. Understanding the structure-function relationships defining the activity and stability of GH7 CBHs is thus of keen interest. Accordingly, we report the comprehensive characterization of the GH7 CBH secreted by G. candidum (GcaCel7A). The bimodular cellulase consists of a family 1 cellulose-binding module (CBM) and linker connected to a GH7 catalytic domain that shares 64% sequence identity with the archetypal industrial GH7 CBH of Hypocrea jecorina (HjeCel7A). GcaCel7A shows activity on Avicel cellulose similar to HjeCel7A, with less product inhibition, but has a lower temperature optimum (50 °C versus 60-65 °C, respectively). Five crystal structures, with and without bound thio-oligosaccharides, show conformational diversity of tunnel-enclosing loops, including a form with partial tunnel collapse at subsite -4 not reported previously in GH7. Also, the first O-glycosylation site in a GH7 crystal structure is reported--on a loop where the glycan probably influences loop contacts across the active site and interactions with the cellulose surface. The GcaCel7A structures indicate higher loop flexibility than HjeCel7A, in accordance with sequence modifications. However, GcaCel7A retains small fluctuations in molecular simulations, suggesting high processivity and low endo-initiation probability, similar to HjeCel7A. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 5AMP, 4ZZV, 4ZZW, 4ZZT, and 4ZZU. The Geotrichum candidum GH family 7 cellobiohydrolase nucleotide sequence is available in GenBank under accession number KJ958925. ENZYMES: Glycoside hydrolase family 7 reducing end acting cellobiohydrolase.


Assuntos
Celulose 1,4-beta-Celobiosidase , Geotrichum/enzimologia , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Temperatura
7.
J Biol Chem ; 290(38): 22955-69, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26178376

RESUMO

The recently discovered lytic polysaccharide monooxygenases (LPMOs) carry out oxidative cleavage of polysaccharides and are of major importance for efficient processing of biomass. NcLPMO9C from Neurospora crassa acts both on cellulose and on non-cellulose ß-glucans, including cellodextrins and xyloglucan. The crystal structure of the catalytic domain of NcLPMO9C revealed an extended, highly polar substrate-binding surface well suited to interact with a variety of sugar substrates. The ability of NcLPMO9C to act on soluble substrates was exploited to study enzyme-substrate interactions. EPR studies demonstrated that the Cu(2+) center environment is altered upon substrate binding, whereas isothermal titration calorimetry studies revealed binding affinities in the low micromolar range for polymeric substrates that are due in part to the presence of a carbohydrate-binding module (CBM1). Importantly, the novel structure of NcLPMO9C enabled a comparative study, revealing that the oxidative regioselectivity of LPMO9s (C1, C4, or both) correlates with distinct structural features of the copper coordination sphere. In strictly C1-oxidizing LPMO9s, access to the solvent-facing axial coordination position is restricted by a conserved tyrosine residue, whereas access to this same position seems unrestricted in C4-oxidizing LPMO9s. LPMO9s known to produce a mixture of C1- and C4-oxidized products show an intermediate situation.


Assuntos
Cálcio/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Neurospora crassa/enzimologia , Polissacarídeos/química , Especificidade por Substrato
8.
Carbohydr Res ; 412: 43-9, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005928

RESUMO

In the present work we suggest an efficient method, using the whole time course of the reaction, whereby parameters kcat, Km and product KI for the hydrolysis of a p-nitrophenyl glycoside by an exo-acting glycoside hydrolase can be estimated in a single experiment. Its applicability was demonstrated for three retaining exo-glycoside hydrolases, ß-xylosidase from Aspergillus awamori, ß-galactosidase from Penicillium sp. and α-galactosidase from Thermotoga maritima (TmGalA). During the analysis of the reaction course catalyzed by the TmGalA enzyme we had observed that a non-enzymatic process, mutarotation of the liberated α-d-galactose, affected the reaction significantly.


Assuntos
Aspergillus/química , Glicosídeos/química , Cinética , Penicillium/química , Thermotoga maritima/química , alfa-Galactosidase/química , beta-Galactosidase/química , Galactose/química , Hidrólise , Xilosidases/química
9.
Carbohydr Res ; 401: 115-21, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25486100

RESUMO

Broad regioselectivity of α-galactosidase from Thermotoga maritima (TmGal36A) is a limiting factor for application of the enzyme in the directed synthesis of oligogalactosides. However, this property can be used as a convenient tool in studies of thermodynamics of a glycosidic bond. Here, a novel approach to energy difference estimation is suggested. Both transglycosylation and hydrolysis of three types of galactosidic linkages were investigated using total kinetics of formation and hydrolysis of pNP-galactobiosides catalysed by monomeric glycoside hydrolase family 36 α-galactosidase from T. maritima, a retaining exo-acting glycoside hydrolase. We have estimated transition state free energy differences between the 1,2- and 1,3-linkage (ΔΔG(‡)0 values were equal 5.34 ± 0.85 kJ/mol) and between 1,6-linkage and 1,3-linkage (ΔΔG(‡)0=1.46 ± 0.23 kJ/mol) in pNP-galactobiosides over the course of the reaction catalysed by TmGal36A. Using the free energy difference for formation and hydrolysis of glycosidic linkages (ΔΔG(‡)F-ΔΔG(‡)H), we found that the 1,2-linkage was 2.93 ± 0.47 kJ/mol higher in free energy than the 1,3-linkage, and the 1,6-linkage 4.44 ± 0.71 kJ/mol lower.


Assuntos
Biocatálise , Dissacarídeos/química , Dissacarídeos/metabolismo , Thermotoga maritima/enzimologia , alfa-Galactosidase/metabolismo , Glicosilação , Hidrólise , Cinética , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA