Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Mol Neurosci ; 16: 1038341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910260

RESUMO

Melanocortin 3 receptors (MC3R) and melanocortin 4 receptors (MC4R) are vital in regulating a variety of functions across many species. For example, the dysregulation of these receptors results in obesity and dysfunction in sexual behaviors. Only a handful of studies have mapped the expression of MC3R and MC4R mRNA across the central nervous system, with the primary focus on mice and rats. Because Syrian hamsters are valuable models for functions regulated by melanocortin receptors, our current study maps the distribution of MC3R and MC4R mRNA in the Syrian hamster telencephalon, diencephalon, and midbrain using RNAscope. We found that the expression of MC3R mRNA was lowest in the telencephalon and greatest in the diencephalon, whereas the expression of MC4R mRNA was greatest in the midbrain. A comparison of these findings to previous studies found that MC3R and MC4R expression is similar in some brain regions across species and divergent in others. In addition, our study identifies novel brain regions for the expression of MC3Rs and MC4Rs, and identifies cells that co-express bothMC3 and MC4 receptors within certain brain regions.

2.
Front Integr Neurosci ; 17: 1052418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845406

RESUMO

Many early-career neuroscientists with diverse identities may not have mentors who are more advanced in the neuroscience pipeline and have a congruent identity due to historic biases, laws, and policies impacting access to education. Cross-identity mentoring relationships pose challenges and power imbalances that impact the retention of diverse early career neuroscientists, but also hold the potential for a mutually enriching and collaborative relationship that fosters the mentee's success. Additionally, the barriers faced by diverse mentees and their mentorship needs may evolve with career progression and require developmental considerations. This article provides perspectives on factors that impact cross-identity mentorship from individuals participating in Diversifying the Community of Neuroscience (CNS)-a longitudinal, National Institute of Neurological Disorders and Stroke (NINDS) R25 neuroscience mentorship program developed to increase diversity in the neurosciences. Participants in Diversifying CNS were comprised of 14 graduate students, postdoctoral fellows, and early career faculty who completed an online qualitative survey on cross-identity mentorship practices that impact their experience in neuroscience fields. Qualitative survey data were analyzed using inductive thematic analysis and resulted in four themes across career levels: (1) approach to mentorship and interpersonal dynamics, (2) allyship and management of power imbalance, (3) academic sponsorship, and (4) institutional barriers impacting navigation of academia. These themes, along with identified mentorship needs by developmental stage, provide insights mentors can use to better support the success of their mentees with diverse intersectional identities. As highlighted in our discussion, a mentor's awareness of systemic barriers along with active allyship are foundational for their role.

3.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674893

RESUMO

Like many social behaviors, aggression can be rewarding, leading to behavioral plasticity. One outcome of reward-induced aggression is the long-term increase in the speed in which future aggression-based encounters is initiated. This form of aggression impacts dendritic structure and excitatory synaptic neurotransmission in the nucleus accumbens, a brain region well known to regulate motivated behaviors. Yet, little is known about the intracellular signaling mechanisms that drive these structural/functional changes and long-term changes in aggressive behavior. This study set out to further elucidate the intracellular signaling mechanisms regulating the plasticity in neurophysiology and behavior that underlie the rewarding consequences of aggressive interactions. Female Syrian hamsters experienced zero, two or five aggressive interactions and the phosphorylation of proteins in reward-associated regions was analyzed. We report that aggressive interactions result in a transient increase in the phosphorylation of extracellular-signal related kinase 1/2 (ERK1/2) in the nucleus accumbens. We also report that aggressive interactions result in a transient decrease in the phosphorylation of mammalian target of rapamycin (mTOR) in the medial prefrontal cortex, a major input structure to the nucleus accumbens. Thus, this study identifies ERK1/2 and mTOR as potential signaling pathways for regulating the long-term rewarding consequences of aggressive interactions. Furthermore, the recruitment profile of the ERK1/2 and the mTOR pathways are distinct in different brain regions.


Assuntos
Sistema de Sinalização das MAP Quinases , Núcleo Accumbens , Cricetinae , Animais , Feminino , Núcleo Accumbens/metabolismo , Mesocricetus , Fosforilação , Agressão/fisiologia , Córtex Pré-Frontal/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(19): e2121037119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512092

RESUMO

Studies from a variety of species indicate that arginine­vasopressin (AVP) and its V1a receptor (Avpr1a) play a critical role in the regulation of a range of social behaviors by their actions in the social behavior neural network. To further investigate the role of AVPRs in social behavior, we performed CRISPR-Cas9­mediated editing at the Avpr1a gene via pronuclear microinjections in Syrian hamsters (Mesocricetus auratus), a species used extensively in behavioral neuroendocrinology because they produce a rich suite of social behaviors. Using this germ-line gene-editing approach, we generated a stable line of hamsters with a frame-shift mutation in the Avpr1a gene resulting in the null expression of functional Avpr1as. Avpr1a knockout (KO) hamsters exhibited a complete lack of Avpr1a-specific autoradiographic binding throughout the brain, behavioral insensitivity to centrally administered AVP, and no pressor response to a peripherally injected Avpr1a-specific agonist, thus confirming the absence of functional Avpr1as in the brain and periphery. Contradictory to expectations, Avpr1a KO hamsters exhibited substantially higher levels of conspecific social communication (i.e., odor-stimulated flank marking) than their wild-type (WT) littermates. Furthermore, sex differences in aggression were absent, as both male and female KOs exhibited more aggression toward same-sex conspecifics than did their WT littermates. Taken together, these data emphasize the importance of comparative studies employing gene-editing approaches and suggest the startling possibility that Avpr1a-specific modulation of the social behavior neural network may be more inhibitory than permissive.


Assuntos
Sistemas CRISPR-Cas , Receptores de Vasopressinas , Agressão/fisiologia , Animais , Arginina/metabolismo , Arginina Vasopressina/genética , Cricetinae , Mesocricetus , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Comportamento Social
5.
Front Behav Neurosci ; 14: 583395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328919

RESUMO

Our social relationships determine our health and well-being. In rodent models, there is now strong support for the rewarding properties of aggressive or assertive behaviors to be critical for the expression and development of adaptive social relationships, buffering from stress and protecting from the development of psychiatric disorders such as depression. However, due to the false belief that aggression is not a part of the normal repertoire of social behaviors displayed by females, almost nothing is known about the neural mechanisms mediating the rewarding properties of aggression in half the population. In the following study, using Syrian hamsters as a well-validated and translational model of female aggression, we investigated the effects of aggressive experience on the expression of markers of postsynaptic structure (PSD-95, Caskin I) and excitatory synaptic transmission (GluA1, GluA2, GluA4, NR2A, NR2B, mGluR1a, and mGluR5) in the nucleus accumbens (NAc), caudate putamen and prefrontal cortex. Aggressive experience resulted in an increase in PSD-95, GluA1 and the dimer form of mGluR5 specifically in the NAc 24 h following aggressive experience. There was also an increase in the dimer form of mGluR1a 1 week following aggressive experience. Aggressive experience also resulted in an increase in the strength of the association between these postsynaptic proteins and glutamate receptors, supporting a common mechanism of action. In addition, 1 week following aggressive experience there was a positive correlation between the monomer of mGluR5 and multiple AMPAR and NMDAR subunits. In conclusion, we provide evidence that aggressive experience in females results in an increase in the expression of postsynaptic density, AMPARs and group I metabotropic glutamate receptors, and an increase in the strength of the association between postsynaptic proteins and glutamate receptors. This suggests that aggressive experience may result in an increase in excitatory synaptic transmission in the NAc, potentially encoding the rewarding and behavioral effects of aggressive interactions.

6.
Psychopharmacology (Berl) ; 237(2): 329-344, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31691846

RESUMO

RATIONALE: Understanding the neurobiological mechanisms mediating dominance and competitive aggression is essential to understanding the development and treatment of various psychiatric disorders. Previous research suggests that these mechanisms are both sexually differentiated and influenced substantially by social experience. In numerous species, GABAA receptors in the lateral septum have been shown to play a significant role in aggression in males. However, very little is known about the role of these GABAA receptors in female aggression, the role of social experience on GABAA receptor-mediated aggression, or the roles of different GABAA subtypes in regulating aggression. OBJECTIVES: Thus, in the following set of experiments, we determined the role of social experience in modulating GABAA receptor-induced aggression in both male and female Syrian hamsters, with a particular focus on the GABAA receptor subtype mediating these effects. RESULTS: Activation of GABAA receptors in the dorsal lateral septum increased aggression in both males and females. Social housing, however, significantly decreased the ability of GABAA receptor activation to induce aggression in males but not females. No significant differences were observed in the effects of GABAA receptor activation in dominant versus subordinate group-housed hamsters. Finally, examination of potential GABAA receptor subtype specificity revealed that social housing decreased the ratio of δ extrasynaptic to γ2 synaptic subunit GABAA receptor mRNA expression in the anterior dorsal lateral septum, while activation of δ extrasynaptic, but not γ2 synaptic, GABAA receptors in the dorsal lateral septum increased aggression. CONCLUSIONS: These data suggest that social experience can have profound effects on the neuronal mechanisms mediating aggression, especially in males, and that δ extrasynaptic GABAA receptors may be an important therapeutic target in disorders characterized by high levels of aggression.


Assuntos
Agressão/fisiologia , Agressão/psicologia , Receptores de GABA-A/metabolismo , Núcleos Septais/metabolismo , Caracteres Sexuais , Comportamento Social , Agressão/efeitos dos fármacos , Animais , Cricetinae , Feminino , Agonistas de Receptores de GABA-A/administração & dosagem , Masculino , Mesocricetus , Microinjeções/métodos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Núcleos Septais/efeitos dos fármacos
7.
Neuropsychopharmacology ; 44(1): 97-110, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29968846

RESUMO

The rewarding properties of social interactions are essential for the expression of social behavior and the development of adaptive social relationships. Here, we review sex differences in social reward, and more specifically, how oxytocin (OT) acts in the mesolimbic dopamine system (MDS) to mediate the rewarding properties of social interactions in a sex-dependent manner. Evidence from rodents and humans suggests that same-sex social interactions may be more rewarding in females than in males. We propose that there is an inverted U relationship between OT dose, social reward, and neural activity within structures of the MDS in both males and females, and that this dose-response relationship is initiated at lower doses in females than males. As a result, depending on the dose of OT administered, OT could reduce social reward in females, while enhancing it in males. Sex differences in the neural mechanisms regulating social reward may contribute to sex differences in the incidence of a large number of psychiatric and neurodevelopmental disorders. This review addresses the potential significance of a sex-dependent inverted U dose-response function for OT's effects on social reward and in the development of gender-specific therapies for these disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Ocitocina/farmacologia , Recompensa , Caracteres Sexuais , Comportamento Social , Animais , Humanos
8.
Neuropsychopharmacology ; 44(4): 785-792, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30467338

RESUMO

Social reward is critical for social relationships, and yet we know little about the characteristics of social interactions that are rewarding or the neural mechanisms underlying that reward. Here, we investigate the sex-dependent role of oxytocin receptors within the ventral tegmental area (VTA) in mediating the magnitude and valence of social reward. Operant and classical conditioning tests were used to measure social reward associated with same-sex social interactions. The effects of oxytocin, selective oxytocin receptor agonists, antagonists, and vehicle injected into the VTA on social reward was determined in male and female Syrian hamsters. The colocalization of FOS and oxytocin in sites that project to the VTA following social interaction was also determined. Females find same-sex social interactions more rewarding than males and activation of oxytocin receptors in the VTA is critical for social reward in females, as well as males. These studies provide support for the hypothesis that there is an inverted U relationship between the duration of social interaction and social reward, mediated by oxytocin; and that in females the dose-response relationship is initiated at lower doses compared with males. Same-sex social interaction is more rewarding in females than in males, and an inverted U relationship mediated by oxytocin may have a critical role in assigning positive and negative valence to social stimuli. Understanding these sex differences in social reward processing may be essential for understanding the sex differences in the prevalence of many psychiatric disorders and the development of gender-specific treatments of neuropsychiatric disorders.


Assuntos
Ocitocina/farmacologia , Ocitocina/fisiologia , Receptores de Ocitocina/fisiologia , Recompensa , Caracteres Sexuais , Comportamento Social , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Cricetinae , Relação Dose-Resposta a Droga , Feminino , Relações Interpessoais , Masculino , Microinjeções , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores
9.
Psychoneuroendocrinology ; 95: 128-137, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29852406

RESUMO

The rewarding properties of social interactions play a critical role in the development and maintenance of social relationships, and deficits in social reward are associated with various psychiatric disorders. In the present study, we used a novel Operant Social Preference (OSP) task to investigate the reinforcing properties of social interactions under conditions of high or low reward value, and high or low behavioral effort in male Syrian hamsters. Further, we investigated the role of oxytocin (OT) in a key structure of the mesolimbic reward system, the ventral tegmental area (VTA), in mediating the reinforcing properties of social interaction. Adult male hamsters were placed in a three-chambered apparatus, and allowed access to either a social chamber containing an unrestrained conspecific or a non-social chamber, by pushing through a one-way entry, vertical-swing door. Increasing the duration of social interaction (reward value) decreased the frequency of entering the social interaction chambers, whereas decreasing the duration of social interaction conversely increased the frequency of entries. Moreover, increasing behavioral effort required to access social interaction decreased the frequency of entries, especially under conditions when the duration of social interaction was only 5 s. OT injected into the VTA decreased the frequency of entering social interaction chambers in a manner similar to that observed when duration was increased, whereas injection of an OT receptor antagonist in the VTA increased the frequency of seeking social interaction. Taken together, these data support the hypothesis that activation of OT receptors in the VTA are critical for the reinforcing properties of social interactions. Furthermore, social interactions may exhibit duration and cost dependent reinforcing effects on behavior similar to those observed with food and drugs of abuse.


Assuntos
Ocitocina/fisiologia , Reforço Social , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Condicionamento Operante , Cricetinae , Masculino , Mesocricetus , Ocitocina/metabolismo , Receptores de Ocitocina , Reforço Psicológico , Recompensa
10.
J Neurosci Methods ; 287: 80-88, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587895

RESUMO

BACKGROUND: Social reward plays a critical role in the development of beneficial social relationships, and disorders of the mechanisms controlling social reward are involved in the etiology of many psychiatric diseases. NEW METHOD: We present a novel operant social preference task to quantify social reward in rodents using an apparatus with three chambers separated by one-way vertical-swing doors. The experimental animal is placed in the larger chamber while the two smaller chambers either remain empty or contain a stimulus animal or other potential reward stimulus. Adding weights to the door can alter effort required for rewards. RESULTS: Hamsters (Mesocricetus auratus) entered the chamber containing a stimulus hamster significantly more frequently than an empty chamber. When the reinforcing effects of social interactions were compared to food reward under progressive cost requirements, the reinforcing effects of social interaction and sunflower seeds were similar. Progressively increasing the door weight decreased number of entries, but increased time spent attempting to open the doors. COMPARISON WITH EXISTING METHODS: The quantification of the rewarding properties of social interactions has almost exclusively used the conditioned place preference (CPP) paradigm. Although robust and reliable, CPP includes a memory component, because it relies on the association of place with the social interaction while the operant task presented here does not. CONCLUSIONS: This task allows for detailed and direct assessment of social and non-social rewards that may serve as effective behavioral reinforcers in this operant conditioning model, and it can be used to investigate the neural mechanisms regulating motivation.


Assuntos
Condicionamento Operante , Motivação , Testes Psicológicos , Recompensa , Comportamento Social , Animais , Desenho de Equipamento , Alimentos , Masculino , Mesocricetus , Comportamento Espacial , Percepção Visual
11.
Psychoneuroendocrinology ; 74: 164-172, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27632574

RESUMO

Social reward plays a fundamental role in shaping human and animal behavior. The rewarding nature of many forms of social behavior including sexual behavior, parental behavior, and social play has been revealed using well-established procedures such as the conditioned place preference test. Many motivated social behaviors are regulated by the nonapeptides oxytocin (OT) and arginine vasopressin (AVP) through their actions in multiple brain structures. Interestingly, there are few data on whether OT or AVP might contribute to the rewarding properties of social interaction by their actions within brain structures that play a key role in reward mechanisms such as the ventral tegmental area (VTA). The goal of the present study was to investigate the role of OT and AVP in the VTA in regulating the reward-like properties of social interactions. Social interactions between two male hamsters reduced a spontaneous place avoidance in hamsters injected with saline control. Interestingly, however, OT and AVP injected into the VTA induced a significant two-fold reduction in place avoidance for the social interaction chamber when compared to control injections of vehicle. Finally, because OT and AVP can act on each other's receptors to influence social behavior, we also injected highly selective OTR and V1aR agonists and antagonists to determine whether OT or AVP V1a receptors were responsible for mediating the effects of these neuropeptides on social reward. Our results not only demonstrated that OT and AVP activate OTRs and not V1aRs to mediate social reward, they also demonstrated that the activation of OT receptors in the VTA is essential for the expression of the rewarding properties of social interactions.


Assuntos
Arginina Vasopressina/farmacologia , Arginina Vasopressina/fisiologia , Comportamento Animal/fisiologia , Mesocricetus/fisiologia , Ocitocina/farmacologia , Ocitocina/fisiologia , Receptores de Ocitocina/fisiologia , Receptores de Vasopressinas/fisiologia , Recompensa , Comportamento Social , Área Tegmentar Ventral/fisiologia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Arginina Vasopressina/administração & dosagem , Cricetinae , Masculino , Mesocricetus/metabolismo , Ocitocina/administração & dosagem , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Vasopressinas/agonistas , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA