Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(4): 6058-6068, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653314

RESUMO

The application of two-dimensional (2D) materials has alleviated a number of challenges of traditional epitaxy and pushed forward the integration of dissimilar materials. Besides acting as a seed layer for van der Waals epitaxy, the 2D materials─being atom(s) thick─have also enabled wetting transparency in which the potential field of the substrate, although partially screened, is still capable of imposing epitaxial overgrowth. One of the crucial steps in this technology is the preservation of the quality of 2D materials during and after their transfer to a substrate of interest. In the present study, we show that by honing the achievements of traditional epitaxy and wet chemistry a hybrid approach can be devised that offers a unique perspective for the integration of functional oxides with a silicon platform. It is based on SrO-assisted deoxidation and controllable coverage of silicon surface with a layer(s) of spin-coated graphene oxide, thus simultaneously allowing both direct and van der Waals epitaxy of SrTiO3 (STO). We were able to grow a high-quality STO pseudo-substrate suitable for further overgrowth of functional oxides, such as PbZr1-xTixO3 (PZT). Given that the quality of the films grown on a reduced graphene oxide-buffer layer was almost identical to that obtained on SiC-derived graphene, we believe that this approach may provide new routes for direct and "remote" epitaxy or layer-transfer techniques of dissimilar material systems.

2.
J Phys Chem Lett ; 13(48): 11095-11104, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36417905

RESUMO

We use the synergy of infrared, terahertz, and Raman spectroscopies with DFT calculations to shed light on the magnetic and lattice properties of VI3. The structural transition at TS1 = 79 K is accompanied by a large splitting of polar phonon modes. Below TS1, strong ferromagnetic fluctuations are observed. The variations of phonon frequencies at 55 K induced by magnetoelastic coupling enhanced by spin-orbit interaction indicate the proximity of long-range ferromagnetic order. Below TC = 50 K, two Raman modes simultaneously appear and show dramatic softening in the narrow interval around the temperature TS2 of the second structural transition associated with the order-order magnetic phase transition. Below TS2, a magnon in the THz range appears in Raman spectra. The THz magnon observed in VI3 indicates the application potential of 2D van der Waals ferromagnets in ultrafast THz spintronics, which has previously been considered the exclusive domain of antiferromagnets.

3.
Adv Mater ; 34(15): e2106826, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064954

RESUMO

The combination of strain and electrostatic engineering in epitaxial heterostructures of ferroelectric oxides offers many possibilities for inducing new phases, complex polar topologies, and enhanced electrical properties. However, the dominant effect of substrate clamping can also limit the electromechanical response and often leaves electrostatics to play a secondary role. Releasing the mechanical constraint imposed by the substrate can not only dramatically alter the balance between elastic and electrostatic forces, enabling them to compete on par with each other, but also activates new mechanical degrees of freedom, such as the macroscopic curvature of the heterostructure. In this work, an electrostatically driven transition from a predominantly out-of-plane polarized to an in-plane polarized state is observed when a PbTiO3 /SrTiO3 superlattice with a SrRuO3 bottom electrode is released from its substrate. In turn, this polarization rotation modifies the lattice parameter mismatch between the superlattice and the thin SrRuO3 layer, causing the heterostructure to curl up into microtubes. Through a combination of synchrotron-based scanning X-ray diffraction imaging, Raman scattering, piezoresponse force microscopy, and scanning transmission electron microscopy, the crystalline structure and domain patterns of the curved superlattices are investigated, revealing a strong anisotropy in the domain structure and a complex mechanism for strain accommodation.

4.
ACS Appl Mater Interfaces ; 12(50): 56251-56259, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270441

RESUMO

Lattice strain in oxygen ion conductors can be used to tune their functional properties for applications in fuel cells, sensors, or catalysis. However, experimental measurements of thin film strain in both in- and out-of-plane directions can be experimentally challenging. We propose a method for measuring strain in rare-earth doped ceria thin films by polarized Raman spectroscopy. We study epitaxial CeO2 films substituted by La, Gd, and Yb grown on MgO substrates with BaZrO3 and SrTiO3 interlayers, where different levels of strain are generated by annealing at distinct temperatures. The films show in-plane compression and out-of-plane expansion, resulting in a lowering from the bulk cubic to tetragonal lattice symmetry. This leads to the splitting of the F2g Raman mode in the cubic phase to B2g and Eg modes in the tetragonal lattice. The symmetry and frequency of these modes are determined by polarized Raman in the backscattering and right-angle scattering geometries as well as by first-principal calculations. The frequency splitting of the two modes is proportional to the strain measured by X-ray diffraction and its magnitude agrees with first-principles calculations. The results offer a fast, nondestructive, and precise method for measuring both in- and out-of-plane strain in ceria and can be readily applied to other ionic conductors.

5.
Electromagn Biol Med ; 36(3): 270-278, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28574758

RESUMO

Mitochondrial dysfunction is a central defect in cells creating the Warburg and reverse Warburg effect cancers. However, the link between mitochondrial dysfunction and cancer has not yet been clearly explained. Decrease of mitochondrial oxidative energy production to about 50 % in comparison with healthy cells may be caused by inhibition of pyruvate transfer into mitochondrial matrix and/or disturbed H+ ion transfer across inner mitochondrial membrane into cytosol. Lowering of the inner membrane potential and shifting of the working point of mitochondria to high values of pH above an intermediate point causes reorganization of the ordered water layer at the mitochondrial membrane. The reorganized ordered water layers at high pH values release electrons which are transferred to the cytosol rim of the layer. The electrons damp electromagnetic activity of Warburg effect cancer cells or fibroblasts associated with reverse Warburg effect cancer cells leading to lowered electromagnetic activity, disturbed coherence, increased frequency of oscillations and decreased level of biological functions. In reverse Warburg effect cancers, associated fibroblasts supply energy-rich metabolites to the cancer cell resulting in increased power of electromagnetic field, fluctuations due to shift of oscillations to an unstable nonlinear region, decreased frequency and loss of coherence.


Assuntos
Campos Eletromagnéticos , Mitocôndrias/patologia , Neoplasias/patologia , Células Cultivadas , Fibroblastos/patologia , Humanos , Concentração de Íons de Hidrogênio , Oscilometria
6.
Inorg Chem ; 50(8): 3559-66, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21417340

RESUMO

Solid solutions InMn(1-x)Ga(x)O(3) (0 ≤ x ≤ 1) have been investigated using magnetic, dielectric, specific heat, differential scanning calorimetry (DSC), and high-temperature powder synchrotron X-ray diffraction (HT-SXRD) measurements. It was found that samples with 0.5 ≤ x ≤ 1 crystallize in space group P6(3)/mmc with a ~ 3.32 Å and c ~ 11.9 Å, and samples with 0.0 ≤ x ≤ 0.4 crystallize in space group P6(3)cm with a ~ 5.8 Å and c ~ 11.6 Å at room temperature. HT-SXRD data revealed the existence of a P6(3)cm-to-P6(3)/mmc phase transition at about 480 K in InMn(0.6)Ga(0.4)O(3) and at 950 K in InMn(0.7)Ga(0.3)O(3). However, no dielectric, phonon, second-harmonic-generation, or DSC anomalies were found to be associated with these phase transitions. The phase transition should be improper ferroelectric from the symmetry point of view, but the above-mentioned experimental facts, together with the absence of ferroelectric hysteresis loops, revealed no evidence for ferroelectricity in the low-temperature P6(3)cm structure. We suggest that InMn(1-x)Ga(x)O(3) corresponds to a nonferroelectric phase of hexagonal RMnO(3) with P6(3)cm symmetry. The antiferromagnetic phase-transition temperature decreases from 118 K for x = 0 to 105 K for x = 0.1 and 73 K for x = 0.2, and no long-range magnetic ordering could be found for x ≥ 0.3. Specific heat anomalies associated with short-range magnetic ordering were observed for 0.0 ≤ x ≤ 0.5. InMn(1-x)Ga(x)O(3) with small Mn contents (0.8 ≤ x ≤ 0.98) has a bright-blue color.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA