Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arch Toxicol ; 94(12): 3993-4005, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32844245

RESUMO

Chronic exposure to inorganic arsenic is associated with a variety of adverse health effects, including lung, bladder, kidney, and liver cancer. Several mechanisms have been proposed for arsenic-induced tumorigenesis; however, insufficient knowledge and many unanswered questions remain to explain the integrated molecular pathogenesis of arsenic carcinogenicity. In the present study, using non-tumorigenic human liver HepaRG cells, we investigated epigenetic alterations upon prolonged exposure to a noncytotoxic concentration of sodium arsenite (NaAsO2). We demonstrate that continuous exposure of HepaRG cells to 1 µM sodium arsenite (NaAsO2) for 14 days resulted in substantial cytosine DNA demethylation and hypermethylation across the genome, among which the claudin 14 (CLDN14) gene was hypermethylated and the most down-regulated gene. Another important finding was a profound loss of histone H3 lysine 36 (H3K36) trimethylation, which was accompanied by increased damage to genomic DNA and an elevated de novo mutation frequency. These results demonstrate that continuous exposure of HepaRG cells to a noncytotoxic concentration of NaAsO2 results in substantial epigenetic abnormalities accompanied by several carcinogenesis-related events, including induction of epithelial-to-mesenchymal transition, damage to DNA, inhibition of DNA repair genes, and induction of de novo mutations. Importantly, this study highlights the intimate mechanistic link and interplay between two fundamental cancer-associated events, epigenetic and genetic alterations, in arsenic-associated carcinogenesis.


Assuntos
Arsenitos/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Compostos de Sódio/toxicidade , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Claudinas/genética , Claudinas/metabolismo , Dano ao DNA , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mutação
2.
Biomedicines ; 8(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825120

RESUMO

The androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and metastasis. Thus, blocking AR activity and its downstream signaling constitutes a major strategy for PCa treatment. Here, we report on the potent anti-PCa activity of a small-molecule imidazoacridinone, C-1311. In AR-positive PCa cells, C-1311 was found to inhibit the transcriptional activity of AR, uncovering a novel mechanism that may be relevant for its anticancer effect. Mechanistically, C-1311 decreased the AR binding to the prostate-specific antigen (PSA) promoter, reduced the PSA protein level, and, as shown by transcriptome sequencing, downregulated numerous AR target genes. Importantly, AR-negative PCa cells were also sensitive to C-1311, suggesting a promising efficacy in the androgen-independent PCa sub-type. Irrespective of AR status, C-1311 induced DNA damage, arrested cell cycle progression, and induced apoptosis. RNA sequencing indicated significant differences in the transcriptional response to C-1311 between the PCa cells. Gene ontology analysis showed that in AR-dependent PCa cells, C-1311 mainly affected the DNA damage response pathways. In contrast, in AR-independent PCa cells, C-1311 targeted the cellular metabolism and inhibited the genes regulating glycolysis and gluconeogenesis. Together, these results indicate that C-1311 warrants further development for the treatment of PCa.

3.
Eur J Med Chem ; 204: 112599, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736230

RESUMO

New promising unsymmetrical bisacridine derivatives (UAs), have been developed. Three groups including 36 compounds were synthesized by the condensation of 4-nitro or 4-methylacridinone, imidazoacridinone and triazoloacridinone derivatives with 1-nitroacridine compounds linked with an aminoalkyl chain. Cytotoxicity screening revealed the high potency of these compounds against several tumor cell lines. Particularly, imidazoacridinone-1-nitroacridine dimers strongly inhibited pancreatic Panc-1, Mia-Pa-Ca-2, Capan-2 and prostate cancer DU-145 cell growth. The studied compounds showed very strong antitumor activity (T/C> 300%) against Walker 256 rat adenocarcinoma. The selected 26 UAs were tested against 12 human tumor xenografts in nude mice, including colon, breast, prostate and pancreatic cancers. The studies on the molecular mechanism of action demonstrated that these unsymmetrical dimers significantly responded to the presence of G-quadruplex not to dsDNA. Structure-activity relationships for UAs potency to G-quadruplex stabilization indicated that thermal stability of this drug-G-quadruplex complex depended not only on the structure of heterocyclic rings, but also on the properties of dialkylamino chains of the ring linkers. In conclusion, the presented studies identified the new group of effective antitumor agents against solid human tumors, particularly pancreatic Panc-1, BxPC-3 and Mia-Pa-Ca-2 and strongly indicated their distinctive interactions with DNA. In contrast to monomers, G-quadruplex not dsDNA is proposed to be the first molecular target for these compounds.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , DNA/química , Desenho de Fármacos , Quadruplex G/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Relação Estrutura-Atividade
4.
FASEB J ; 34(6): 7773-7785, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304142

RESUMO

Interindividual variability and sexual dimorphisms in the development of nonalcoholic fatty liver disease (NAFLD) are still poorly understood. In the present study, male and female strains of Collaborative Cross (CC) mice were fed a high-fat and high-sucrose (HF/HS) diet or a control diet for 12 weeks to investigate interindividual- and sex-specific variations in the development of NAFLD. The severity of liver steatosis varied between sexes and individual strains and was accompanied by an elevation of serum markers of insulin resistance, including increases in total cholesterol, low-density lipoproteins, high-density lipoproteins, phospholipids, and glucose. The development of NAFLD was associated with overexpression of the critical fatty acid uptake and de novo lipogenesis genes Pparg, Mogat1, Cd36, Acaab1, Fabp2, and Gdf15 in male and female mice. The expression of Pparg, Mogat1, and Cd36 was positively correlated with liver triglycerides in male mice, and Mogat1 and Cd36 expression were positively correlated with liver triglycerides in female mice. Our results indicate the value of CC mice in combination with HF/HS diet-induced alterations as an approach to study the susceptibility and interindividual variabilities in the pathogenesis of nonalcoholic fatty liver and early nonalcoholic steatohepatitis at the population level, uncovering of susceptible and resistant cohorts, and identifying sex-specific molecular determinants of disease susceptibility.


Assuntos
Camundongos de Cruzamento Colaborativo/fisiologia , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Camundongos de Cruzamento Colaborativo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/patologia , Ácidos Graxos/metabolismo , Feminino , Resistência à Insulina/fisiologia , Lipogênese/fisiologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Fatores Sexuais , Triglicerídeos/metabolismo
5.
Arch Toxicol ; 93(11): 3335-3344, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31555880

RESUMO

The increasing number of man-made chemicals in the environment that may pose a carcinogenic risk emphasizes the need to develop reliable time- and cost-effective approaches for carcinogen detection. To address this issue, we have investigated the utility of human hepatocytes for the in vitro identification of genotoxic and non-genotoxic carcinogens. Induced pluripotent stem-cell (iPSC)-derived human hepatocytes were treated with the genotoxic carcinogens aflatoxin B1 (AFB1) and benzo[a]pyrene (B[a]P), the non-genotoxic liver carcinogen methapyrilene, and the non-carcinogens aflatoxin B2 (AFB2) and benzo[e]pyrene (B[e]P) at non-cytotoxic concentrations for 7 days, and transcriptomic and DNA methylation profiles were examined. 1569, 1693, and 2061 differentially expressed genes (DEGs) were detected in cells treated with AFB1, B[a]P, and methapyrilene, respectively, whereas no DEGs were found in cells treated with AFB2 or B[e]P. In contrast to the profound cellular transcriptomic responses, exposure of iPSC-derived hepatocytes to the test chemicals resulted in minor random alterations in global DNA methylome, most of which were not associated with changes in gene expression. Overall, our results demonstrate that the major non-genotoxic effect of exposure to carcinogens, regardless of their mode of action, is a profound global transcriptomic response rather than global DNA methylome alterations, indicating the significance of transcriptomic alterations as an informative endpoint in short-term in vitro carcinogen testing.


Assuntos
Carcinógenos/toxicidade , Citosina/metabolismo , Metilação de DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Transcriptoma/genética
6.
Toxicol Sci ; 170(2): 273-282, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086990

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is becoming a major etiological risk factor for hepatocellular carcinoma (HCC) in the United States and other Western countries. In this study, we investigated the role of gene-specific promoter cytosine DNA methylation and gene expression alterations in the development of NAFLD-associated HCC in mice using (1) a diet-induced animal model of NAFLD, (2) a Stelic Animal Model of nonalcoholic steatohepatitis-derived HCC, and (3) a choline- and folate-deficient (CFD) diet (CFD model). We found that the development of NAFLD and its progression to HCC was characterized by down-regulation of glycine N-methyltransferase (Gnmt) and this was mediated by progressive Gnmt promoter cytosine DNA hypermethylation. Using a panel of genetically diverse inbred mice, we observed that Gnmt down-regulation was an early event in the pathogenesis of NAFLD and correlated with the extent of the NAFLD-like liver injury. Reduced GNMT expression was also found in human HCC tissue and liver cancer cell lines. In in vitro experiments, we demonstrated that one of the consequences of GNMT inhibition was an increase in genome methylation facilitated by an elevated level of S-adenosyl-L-methionine. Overall, our findings suggest that reduced Gnmt expression caused by promoter hypermethylation is one of the key molecular events in the development of NAFLD-derived HCC and that assessing Gnmt methylation level may be useful for disease stratification.


Assuntos
Carcinoma Hepatocelular/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Glicina N-Metiltransferase/genética , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Carcinogênese , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas
7.
Chem Res Toxicol ; 32(5): 887-898, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30990016

RESUMO

Metabolism of 1,3-butadiene, a known human and rodent carcinogen, results in formation of reactive epoxides, a key event in its carcinogenicity. Although mice exposed to 1,3-butadiene present DNA adducts in all tested tissues, carcinogenicity is limited to liver, lung, and lymphoid tissues. Previous studies demonstrated that strain- and tissue-specific epigenetic effects in response to 1,3-butadiene exposure may influence susceptibly to DNA damage and serve as a potential mechanism of tissue-specific carcinogenicity. This study aimed to investigate interindividual variability in the effects of 1,3-butadiene using a population-based mouse model. Male mice from 20 Collaborative Cross strains were exposed to 0 or 635 ppm 1,3-butadiene by inhalation (6 h/day, 5 days/week) for 2 weeks. We evaluated DNA damage and epigenetic effects in target (lung and liver) and nontarget (kidney) tissues of 1,3-butadiene-induced carcinogenesis. DNA damage was assessed by measuring N-7-(2,3,4-trihydroxybut-1-yl)-guanine (THB-Gua) adducts. To investigate global histone modification alterations, we evaluated the trimethylation and acetylation of histones H3 and H4 across tissues. Changes in global cytosine DNA methylation were evaluated from the levels of methylation of LINE-1 and SINE B1 retrotransposons. We quantified the degree of variation across strains, deriving a chemical-specific human variability factor to address population variability in carcinogenic risk, which is largely ignored in current cancer risk assessment practice. Quantitative trait locus mapping identified four candidate genes related to chromatin remodeling whose variation was associated with interstrain susceptibility. Overall, this study uses 1,3-butadiene to demonstrate how the Collaborative Cross mouse population can be used to identify the mechanisms for and quantify the degree of interindividual variability in tissue-specific effects that are relevant to chemically induced carcinogenesis.


Assuntos
Butadienos/toxicidade , Adutos de DNA/metabolismo , Epigênese Genética/efeitos dos fármacos , Animais , Carcinógenos Ambientais/toxicidade , Adutos de DNA/química , Adutos de DNA/genética , Metilação de DNA/efeitos dos fármacos , Guanina/análogos & derivados , Guanina/química , Histonas/metabolismo , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Mutagênicos/toxicidade
8.
Biochem Pharmacol ; 142: 21-38, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28645477

RESUMO

Drug resistance is one of the major causes of pancreatic cancer treatment failure. Thus, it is still imperative to develop new active compounds and novel approach to improve drug efficacy. Here we present 9-amino-1-nitroacridine antitumor agent, C-1748, developed in our laboratory, as a candidate for pancreatic cancer treatment. We examined (i) the cellular response of pancreatic cancer cell lines: Panc-1, MiaPaCa-2, BxPC-3 and AsPC-1, differing in expression levels of commonly mutated genes for this cancer type, to C-1748 treatment and (ii) the role of P450 3A4 isoenzyme and cytochrome P450 reductase (CPR) in the modulation of this response. C-1748 exhibited the highest cytotoxic activity against MiaPaCa-2, while AsPC-1 cells were the most resistant (IC50: 0.015, 0.075µM, respectively). A considerable amount of apoptosis was detected in Panc-1 and MiaPaCa-2 cells but only limited apoptosis was observed in AsPC-1 and BxPC-3 cells as indicated by morphological changes and biochemical markers. Furthermore, only AsPC-1 cells underwent senescence. Since AsPC-1 cells were the most resistant to C-1748 as evidenced by the lowest P450 3A4 and CPR protein levels, this cell line was subjected to transient transfection either with P450 3A4 or CPR gene. The overexpression of P450 3A4 or CPR changed the pro-apoptotic activity of C-1748 and sensitized AsPC-1 cells to this drug compared to wild-type cells. However, metabolism was changed significantly only for CPR overexpressing cells. In conclusion, the antitumor effectiveness of C-1748 would be improved by multi-drug therapy with chemotherapeutics, that are able to induce P450 3A4 and/or CPR gene expression.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Nitracrina/análogos & derivados , Neoplasias Pancreáticas , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP3A/genética , Resistencia a Medicamentos Antineoplásicos/genética , Citometria de Fluxo , Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NADPH-Ferri-Hemoproteína Redutase/genética , Nitracrina/farmacologia , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transfecção , Regulação para Cima
9.
Postepy Hig Med Dosw (Online) ; 70: 169-79, 2016 Mar 04.
Artigo em Polonês | MEDLINE | ID: mdl-26943314

RESUMO

Despite the enormous progress made over the past decades in diagnosis, treatment and prevention of many types of tumor, the survival rate for pancreatic cancer still remains poor. Pancreatic cancer is one of the most malignant and chemotherapy-resistant tumors. That is mainly due to the lack of effective diagnosis at an early stage of tumor development and ineffective therapy. In most patients the disease is diagnosed at an advanced, metastatic stage and only 15-20% of patients are eligible for surgical removal of the tumor, which still remains the only chance for radical treatment. Studies in recent years have not yielded significant progress in the treatment of disease, and gemcitabine or its combinations with other chemotherapeutics such as erlotinib or capecitabine still remains the standard therapy. Although mechanisms of cell death induced by gemcitabine and other chemotherapeutic agents are well known, their effectiveness is limited due to the acquisition of drug resistance by pancreatic cancer cells. So far, mechanisms of resistance have been tested for mutations in many genes--the key to proper functioning of signaling pathways in cancer cells. However, recent studies suggest a significant role of the tumor microenvironment in the development and maintaining resistance to conventionally used chemotherapeutic and targeted therapies. Drug resistance of pancreatic cancer results from multiple mechanisms, which may include the following: mutations in key genes, aberrant gene expression, deregulation of key signaling pathways, apoptotic pathways, the capacity for epithelial-mesenchymal transition (EMT), increased angiogenesis, the presence of cancer stem cells or the presence of a hypoxic microenvironment inside the tumor.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Transição Epitelial-Mesenquimal , Humanos , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral , Gencitabina
10.
Cancer Biol Ther ; 16(5): 714-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996841

RESUMO

Increased aerobic glycolysis and de novo lipid biosynthesis are common characteristics of invasive cancers. UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that in normal cells possess the ability to glucuronidate these lipids and speed their excretion; however, de-regulation of these enzymes in cancer cells can lead to an accumulation of bioactive lipids, which further fuels cancer progression. We hypothesize that UGT2B isoform expression is down-regulated in cancer cells and that exogenous re-introduction of these enzymes will reduce lipid content, change the cellular phenotype, and inhibit cancer cell proliferation. In this study, steady-state mRNA levels of UGT isoforms from the 2B family were measured using qPCR in 4 breast cancer and 5 pancreatic cancer cell lines. Expression plasmids for UGT2B isoforms known to glucuronidate cellular lipids, UGT2B4, 2B7, and 2B15 were transfected into MCF-7 and Panc-1 cells, and the cytotoxic effects of these enzymes were analyzed using trypan blue exclusion, annexin V/PI staining, TUNEL assays, and caspase-3 immunohistochemistry. There was a significant decrease in cell proliferation and a significant increase in the number of dead cells after transfection with each of the 3 UGT isoforms in both cell lines. Cellular lipids were also found to be significantly decreased after transfection. The results presented here support our hypothesis and emphasize the important role UGTs can play in cellular proliferation and lipid homeostasis. Evaluating the effect of UGT expression on the lipid levels in cancer cell lines can be relevant to understanding the complex regulation of cancer cells, identifying the roles of UGTs as "lipid-controllers" in cellular homeostasis, and illustrating their suitability as targets for future clinical therapy development.


Assuntos
Neoplasias da Mama/genética , Glucuronosiltransferase/genética , Neoplasias Pancreáticas/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Transfecção
11.
Acta Pharmacol Sin ; 36(3): 385-99, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25640477

RESUMO

AIM: FMS-like receptor tyrosine kinase (FLT3) is expressed in some normal hematopoietic cell types and plays an important role in the pathogenesis of acute myeloid leukemia (AML). In this study, we examined the effects of triazoloacridinone C-1305, an antitumor compound, on AML cells with different FLT3 status in vitro. METHODS: A panel of human leukemic cell lines with different FLT3 status was used, including FLT3 internal tandem duplication mutations (FLT3-ITD, MV-4-11), wild-type FLT3 (RS-4-11) and null-FLT3 (U937) cells. Cell proliferation was estimated using MTT assays, and apoptosis was studied with flow cytometry and fluorescence microscopy. FLT3 kinase activity (phosphorylation of FLT3 at Tyr591) was determined with ELISA and Western blotting. FLT3 downstream signaling proteins involving AKT, MAPK and STAT5 were examined by Western blotting. RNA silencing was used to decrease the endogenous FLT3. RESULTS: The mutant FLT3-ITD cells were more sensitive to C-1305 than the wild-type FLT3 and null-FLT3 cells (the IC50 values measured at 24 h were 1.2±0.17, 2.0±09, 7.6±1.6 µmol/L, respectively). C-1305 (1-10 µmol/L) dose-dependently inhibited the kinase activity of FLT3, which was more pronounced in the mutant FLT3-ITD cells than in the wild-type FLT3 cells. Furthermore, C-1305 dose-dependently decreased the phosphorylation of STAT5 and MAPK and the inhibitory phosphorylation of Bad, and induced time- and dose-dependent apoptosis in the 3 cell lines with the null-FLT3 cells being the least susceptible to C-1305-induced apoptosis. Knockdown of FLT3 with siRNA significantly decreased C-1305-induced cytotoxicity in the mutant FLT3-ITD cells. CONCLUSION: C-1305 induces apoptosis in FLT3-ITD-expressing human leukemia cells in vitro, suggesting that mutated FLT3 kinase can be a new target for C-1305, and C-1305 may be a drug candidate for the therapeutic intervention in FLT3-associated AML.


Assuntos
Acridinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Triazóis/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Células U937 , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
12.
Acta Pharmacol Sin ; 34(1): 146-56, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23160340

RESUMO

AIM: To examine how the higher expression level of CYP3A4 isoenzyme influenced the cytotoxicity of the antitumor triazoloacridinone derivative C-1305 in Chinese hamster ovary (CHO) cells. METHODS: Three CHO cell lines were examined: wild-type CHO cells; CHO-HR cells with overexpression of human cytochrome P450 reductase (CPR); and CHO-HR-3A4 cells with coexpression of human CYP3A4 and CPR. Cellular responses caused by C-1305 were monitored using DAPI staining, cell cycle analysis, phosphatydilserine externalization analysis and SA-ß-galactosidase expression analysis. Cell viability was assessed with simultaneous FDA and PI staining. RESULTS: Treatment with C-1305 for 72 h exhibited different levels of cytotoxicity in the 3 cell lines, and the values of IC80 in CHO, CHO-HR and CHO-HR-3A4 cells were 0.087±0.005, 0.032±0.0001, and 0.064±0.0095 µmol/L, respectively. The cell cycle analysis revealed that both CHO and CHO-HR cells underwent transient G(2)/M arrest, whereas CHO-HR-3A4 cells did not accumulate in this phase. Prolonged exposure up to 120 h caused time-dependent increase in the sub-G(1) fraction in all the 3 cell lines. Treatment with C-1305 caused cell death through apoptosis and necrosis. However, these processes were more pronounced in the transfected CHO cells than in the wild-type cells. The cells surviving after C-1305 exposure underwent senescence. CONCLUSION: CYP3A4 overexpression potently enhances the cellular responses (apoptosis, necrosis and senescence) caused by C-1305 in CHO cells.


Assuntos
Acridinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Citocromo P-450 CYP3A/genética , Citotoxinas/farmacologia , Triazóis/farmacologia , Regulação para Cima , Animais , Células CHO , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA