Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 10(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34943891

RESUMO

The COVID-19 pandemic is a global challenge, demanding researchers address different approaches in relation to prevention, diagnostics and therapeutics. Amongst the many tactics of tackling these therapeutic challenges, small extracellular vesicles (sEVs) or exosomes are emerging as a new frontier in the field of ameliorating viral infections. Exosomes are part of extracellular vesicles (EVs)-spherical biological structures with a lipid bilayer of a diameter of up to 5000 nm, which are released into the intercellular space by most types of eukaryotic cells, both in physiological and pathological states. EVs share structural similarities to viruses, such as small size, common mechanisms of biogenesis and mechanisms for cell entry. The role of EVs in promoting the viral spread by evading the immune response of the host, which is exhibited by retroviruses, indicates the potential for further investigation and possible manipulation of these processes when tackling the spread and treatment of COVID-19. The following paper introduces the topic of the use of exosomes in the treatment of viral infections, and presents the future prospects for the use of these EVs.


Assuntos
COVID-19/terapia , Vesículas Extracelulares/metabolismo , Animais , COVID-19/epidemiologia , COVID-19/virologia , Exossomos/metabolismo , Humanos , Modelos Biológicos , SARS-CoV-2/fisiologia
2.
Int J Mol Sci ; 20(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587792

RESUMO

The growth and development of oocyte affect the functional activities of the surrounding somatic cells. These cells are regulated by various types of hormones, proteins, metabolites, and regulatory molecules through gap communication, ultimately leading to the development and maturation of oocytes. The close association between somatic cells and oocytes, which together form the cumulus-oocyte complexes (COCs), and their bi-directional communication are crucial for the acquisition of developmental competences by the oocyte. In this study, oocytes were extracted from the ovaries obtained from crossbred landrace gilts and subjected to in vitro maturation. RNA isolated from those oocytes was used for the subsequent microarray analysis. The data obtained shows, for the first time, variable levels of gene expression (fold changes higher than |2| and adjusted p-value < 0.05) belonging to four ontological groups: regulation of cell proliferation (GO:0042127), regulation of cell migration (GO:0030334), and regulation of programmed cell death (GO:0043067) that can be used together as proliferation, migration or apoptosis markers. We have identified several genes of porcine oocytes (ID2, VEGFA, BTG2, ESR1, CCND2, EDNRA, ANGPTL4, TGFBR3, GJA1, LAMA2, KIT, TPM1, VCP, GRID2, MEF2C, RPS3A, PLD1, BTG3, CD47, MITF), whose expression after in vitro maturation (IVM) is downregulated with different degrees. Our results may be helpful in further elucidating the molecular basis and functional significance of a number of gene markers associated with the processes of migration, proliferation and angiogenesis occurring in COCs.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Oócitos/metabolismo , Transcriptoma , Animais , Movimento Celular/genética , Células do Cúmulo/metabolismo , Células do Cúmulo/patologia , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Técnicas de Maturação in Vitro de Oócitos , Análise de Sequência com Séries de Oligonucleotídeos , Oócitos/crescimento & desenvolvimento , Oócitos/patologia , RNA/genética , RNA/metabolismo , Suínos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA