Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 6(7): 4244-4255, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633815

RESUMO

A tetrazole-naphthalene linker was used to prepare a nickel MOF (metal-organic framework) (NiNDTz) with interesting properties: a specific surface area SBET of 320 m2g-1 (SLangmuir 436 m2g-1), high thermal stability (Tdonset = 300 °C), and CO2 uptake of 1.85 mmolg-1, attributed to the tetrazole groups to be used as fillers in gas separation membranes. The role of these groups was crucial in the mechanical properties of mixed membranes prepared using polycarbonate as a polymer matrix, providing a very homogeneous filler distribution and also in the gas separation properties since a simultaneous increase in permeability and selectivity was achieved, especially in the hybrid membrane containing 20% filler (PC@NiNDTz-20%). This membrane exhibited an excellent balance between permeability (P) and selectivity (α) with an increase in the permeability of CO2 and H2, 177 and 185%, respectively, and improvements in the selectivity of these gases against greenhouse gases such as methane and ethylene (between 15 and 28% improvement). These results make this membrane competitive to deal with separations in which these gases are involved, and are of special interest for the H2/CH4 separation since it clearly improves the performance of pure PC and no better PC-based membranes have been reported in the literature for this separation.

2.
ACS Appl Mater Interfaces ; 14(48): 53936-53946, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36417669

RESUMO

The enantioselective discrimination of racemic compounds can be achieved through the design and preparation of a new family of chiral conjugated BINOL-porous polymers (CBPPs) from enantiopure (R)- or (S)-BINOL derivatives and 1,3,5-tris(4-phenylboronic acid)benzene or 1,3,5-tris(4-ethynylphenyl)benzene, 1,3,5-triethynyl-2,4,6-trifluorobenzene, and tetra(4-ethynylphenyl)methane as comonomers following Suzuki-Miyaura and Sonogashira-Hagihara carbon-carbon coupling approaches. The obtained CBPPs show high thermal stability, a good specific surface area, and a robust framework and can be applied successfully in the fluorescence recognition of enantiomers of terpenes (limonene and α-pinene) and 1-phenylethylamine. Fluorescence titration of CBPPs-OH in acetonitrile shows that all Sonogashira hosts exhibit a preference for the (R)-enantiomer over the (S)-enantiomer of 1-phenylethylamine, the selectivity being much higher than that of the corresponding BINOL-based soluble system used as a reference. However, the Suzuki host reveals a preference toward (S)-phenylethylamine. Regarding the sensing of terpenes, only Sonogashira hosts show enantiodifferentiation with an almost total preference for the (S)-enantiomer of limonene and α-pinene. Based on the computational simulations and the experimental data, with 1-phenylethylamine as the analyte, chiral recognition is due to the distinctive binding affinities resulting from N···H-O hydrogen bonds and the π-π interaction between the host and the guest. However, for limonene, the geometry of the adsorption complex is mostly governed by the interaction between the hydroxyl group of the BINOL unit and the C═C bond of the iso-propenyl fragment. The synthetic strategy used to prepare CBPPs opens many possibilities to place chiral centers such as BINOL in porous polymers for different chiral applications such as enantiomer recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA