Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 49(12): 7661-7671, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36106659

RESUMO

PURPOSE: Over the past decades, continuous efforts have been made to improve megavoltage (MV) image quality versus dose characteristics, including the implementation of low atomic number (Z) targets in MV beamlines and the development of more efficient detectors. Recently, a diamond target beam within a commercial radiotherapy treatment platform demonstrated improved planar contrast-to-noise-ratio (CNR) per unit dose using a novel 2.5 MV sintered diamond target beam, which enabled image acquisition on the order of mGy. The present work assesses cone beam CT (CBCT) image quality characteristics for the novel 2.5 MV diamond target beam and the effects of volume-of-interest (VOI) collimation on the image quality and imaging dose distribution. METHODS: A sintered diamond target was incorporated into the target arm of the linear accelerator, replacing the 2.5 MV commercial copper imaging target. CBCT image quality was evaluated against the commercial imaging beam with regard to spatial resolution and CNR versus dose. In addition to full-field acquisitions, we investigated VOI techniques that collimate the imaging beam to preselected anatomy, to determine potential image quality improvements and dose sparing capacity. Using an anthropomorphic phantom, VOI regions were defined to encompass the maxillary and ethmoid sinuses and ranged in dimension from 3 cm to 4.85 cm equivalent radius. The MLC was fit to each VOI structure throughout a full CBCT arc and the corresponding MLC sequences were produced as XML scripts for acquisition. Calibrated radiochromic film was used in phantom to measure cumulative axial dose distributions during each CBCT acquisition. RESULTS: In full-field CBCT, the 2.5 MV diamond target beam demonstrated improved CNR versus dose compared to the commercial imaging beam, by factors of up to 1.7. The calculated modulation transfer function (MTF) displayed an increase of nearly 30% in f50 for the 2.5 MV diamond target beam compared to the commercial beam. Using VOI techniques, CNR increased monotonically as a function of equivalent radius at the bone-tissue interface. At the bone-sinus interface, the CNR for the full-field case was slightly decreased compared to the largest VOI case. Imaging dose in the anteroposterior direction increased with increasing VOI equivalent radius. CONCLUSION: The novel 2.5 MV sintered diamond target beam presents a simple modification to the commercial imaging beam which provides improved image quality in full-field CBCT and the potential for simultaneous dose sparing and CNR improvement at high-contrast interfaces using VOI acquisition techniques.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Diamante , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Aceleradores de Partículas , Síncrotrons
2.
Sci Rep ; 12(1): 1559, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091583

RESUMO

Radiotherapy (RT) is an effective cancer treatment modality, but standard RT often causes collateral damage to nearby healthy tissues. To increase therapeutic ratio, radiosensitization via gold nanoparticles (GNPs) has been shown to be effective. One challenge is that megavoltage beams generated by clinical linear accelerators are poor initiators of the photoelectric effect. Previous computer models predicted that a diamond target beam (DTB) will yield 400% more low-energy photons, increasing the probability of interacting with GNPs to enhance the radiation dose by 7.7-fold in the GNP vicinity. After testing DTB radiation coupled with GNPs in multiple cell types, we demonstrate decreased head-and-neck cancer (HNC) cell viability in vitro and enhanced cell-killing in zebrafish xenografts compared to standard RT. HNC cell lines also displayed increased double-stranded DNA breaks with DTB irradiation in the presence of GNPs. This study presents preclinical responses to GNP-enhanced radiotherapy with the novel DTB, providing the first functional data to support the theoretical evidence for radiosensitization via GNPs in this context, and highlighting the potential of this approach to optimize the efficacy of RT in anatomically difficult-to-treat tumors.


Assuntos
Ouro
3.
Phys Imaging Radiat Oncol ; 16: 103-108, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33458352

RESUMO

BACKGROUND AND PURPOSE: A commercial 2.5 MV beam has been clinically available for beam's-eye-view imaging in radiotherapy, offering improved contrast-to-noise ratio (CNR) compared to therapeutic beams, due to the softer spectrum. Previous research suggested that imaging performance could be improved using a low-Z diamond target to reduce the self-absorption of diagnostic energy photons. The aim of this study was to 1) investigate the feasibility of two 2.5 MV diamond target beamline configurations and 2) characterize the dosimetry and planar image quality of these novel low-Z beams. MATERIALS AND METHODS: The commercial 2.5 MV beam was modified by replacing the copper target with sintered diamond. Two beamlines were investigated: a carousel-mounted diamond target beamline and a 'conventional' beamline, with the diamond target in the target arm. Planar image quality was assessed in terms of spatial resolution and CNR. RESULTS: Due to image artifacts, image quality could not be assessed for the carousel-mounted low-Z target beam. The 'conventional' 2.5 MV low-Z beam quality was softer by 2.7% compared to the commercial imaging beam, resulting in improved CNR by factors of up to 1.3 and 1.7 in thin and thick phantoms, respectively. In regard to spatial resolution, the 'conventional' 2.5 MV low-Z beam slightly outperformed the commercial imaging beam. CONCLUSION: With a simple modification to the 2.5 MV commercial beamline, we produced an improved energy spectrum for imaging. This 2.5 MV diamond target beam proved to be an advantageous alternative to the commercial target configuration, offering both superior resolution and CNR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA