Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(15): 11328-11334, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37440304

RESUMO

Toward photocontrol of anion transport across the bilayer membrane, stiff-stilbene, which has dimethyl substituents in the five-membered rings, is functionalized with amidopyrrole units. UV-vis and 1H NMR studies show high photostability and photoconversion yields. Where the photoaddressable (E)- and (Z)-isomers exhibit comparable binding affinities, as determined by 1H NMR titrations, fluorescence-based transport assays reveal significantly higher transport activity for the (Z)-isomers. Changing the binding affinity is thus not a necessity for modulating transport. Additionally, transport can be triggered in situ by light.

2.
Chem Rev ; 123(13): 8530-8574, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37342028

RESUMO

Anionic species are omnipresent and involved in many important biological processes. A large number of artificial anion receptors has therefore been developed. Some of these are capable of mediating transmembrane transport. However, where transport proteins can respond to stimuli in their surroundings, creation of synthetic receptors with stimuli-responsive functions poses a major challenge. Herein, we give a full overview of the stimulus-controlled anion receptors that have been developed thus far, including their application in membrane transport. In addition to their potential operation as membrane carriers, the use of anion recognition motifs in forming responsive membrane-spanning channels is discussed. With this review article, we intend to increase interest in transmembrane transport among scientists working on host-guest complexes and dynamic functional systems in order to stimulate further developments.


Assuntos
Receptores Artificiais , Transporte Biológico , Ânions/química
3.
J Am Chem Soc ; 144(1): 331-338, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932344

RESUMO

Membrane transport proteins fulfill important regulatory functions in biology with a common trait being their ability to respond to stimuli in the environment. Various small-molecule receptors, capable of mediating transmembrane transport, have been successfully developed. However, to confer stimuli-responsiveness on them poses a fundamental challenge. Here we demonstrate photocontrol of transmembrane transport and electric potential using bis(thio)ureas derived from stiff-stilbene. UV-vis and 1H NMR spectroscopy are used to monitor E-Z photoisomerization of these bis(thio)ureas and 1H NMR titrations reveal stronger binding of chloride to the (Z)-form than to the (E)-form. Additional insight into the binding properties is provided by single crystal X-ray crystallographic analysis and DFT geometry optimization. Importantly, the (Z)-isomers are much more active in transmembrane transport than the respective (E)-isomers as shown through various assays. As a result, both membrane transport and depolarization can be modulated upon irradiation, opening up new prospects toward light-based therapeutics as well as physiological and optopharmacological tools for studying anion transport-associated diseases and to stimulate neuronal activity, respectively.


Assuntos
Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA