Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Eur J Immunol ; 53(8): e2350372, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160134

RESUMO

Regulatory and effector cell responses to Plasmodium vivax, the most common human malaria parasite outside Africa, remain understudied in naturally infected populations. Here, we describe peripheral CD4+ T- and B-cell populations during and shortly after an uncomplicated P. vivax infection in 38 continuously exposed adult Amazonians. Consistent with previous observations, we found an increased frequency in CD4+ CD45RA- CD25+ FoxP3+ T regulatory cells that express the inhibitory molecule CTLA-4 during the acute infection, with a sustained expansion of CD21- CD27- atypical memory cells within the CD19+ B-cell compartment. Both Th1- and Th2-type subsets of CXCR5+ ICOShi PD-1+ circulating T follicular helper (cTfh) cells, which are thought to contribute to antibody production, were induced during P. vivax infection, with a positive correlation between overall cTfh cell frequency and IgG antibody titers to the P. vivax blood-stage antigen MSP119 . We identified significant changes in cell populations that had not been described in human malaria, such as an increased frequency of CTLA-4+ T follicular regulatory cells that antagonize Tfh cells, and a decreased frequency of circulating CD24hi CD27+ B regulatory cells in response to acute infection. In conclusion, we disclose a complex immunoregulatory network that is critical to understand how naturally acquired immunity develops in P. vivax malaria.


Assuntos
Malária Vivax , Plasmodium vivax , Adulto , Humanos , Plasmodium vivax/fisiologia , Antígeno CTLA-4 , Linfócitos T Auxiliares-Indutores , Linfócitos T CD4-Positivos
2.
J Fungi (Basel) ; 9(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37233259

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus, which is the most frequent endemic systemic mycosis in many Latin American countries, where ~10 million people are believed to be infected. In Brazil, it is ranked as the tenth most common cause of death among chronic infectious diseases. Hence, vaccines are in development to combat this insidious pathogen. It is likely that effective vaccines will need to elicit strong T cell-mediated immune responses composed of IFNγ secreting CD4+ helper and CD8+ cytolytic T lymphocytes. To induce such responses, it would be valuable to harness the dendritic cell (DC) system of antigen-presenting cells. To assess the potential of targeting P10, which is a peptide derived from gp43 secreted by the fungus, directly to DCs, we cloned the P10 sequence in fusion with a monoclonal antibody to the DEC205 receptor, an endocytic receptor that is abundant on DCs in lymphoid tissues. We verified that a single injection of the αDEC/P10 antibody caused DCs to produce a large amount of IFNγ. Administration of the chimeric antibody to mice resulted in a significant increase in the levels of IFN-γ and IL-4 in lung tissue relative to control animals. In therapeutic assays, mice pretreated with αDEC/P10 had significantly lower fungal burdens compared to control infected mice, and the architecture of the pulmonary tissues of αDEC/P10 chimera-treated mice was largely normal. Altogether, the results obtained so far indicate that targeting P10 through a αDEC/P10 chimeric antibody in the presence of polyriboinosinic: polyribocytidylic acid is a promising strategy in vaccination and therapeutic protocols to combat PCM.

3.
Biosensors (Basel) ; 13(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36979583

RESUMO

The evaluation of serological responses to COVID-19 is crucial for population-level surveillance, developing new vaccines, and evaluating the efficacy of different immunization programs. Research and development of point-of-care test technologies remain essential to improving immunity assessment, especially for SARS-CoV-2 variants that partially evade vaccine-induced immune responses. In this work, an impedimetric biosensor based on the immobilization of the recombinant trimeric wild-type spike protein (S protein) on zinc oxide nanorods (ZnONRs) was employed for serological evaluation. We successfully assessed its applicability using serum samples from spike-based COVID-19 vaccines: ChAdOx1-S (Oxford-AstraZeneca) and BNT162b2 (Pfizer-BioNTech). Overall, the ZnONRs/ spike-modified electrode displayed accurate results for both vaccines, showing excellent potential as a tool for assessing and monitoring seroprevalence in the population. A refined outcome of this technology was achieved when the ZnO immunosensor was functionalized with the S protein from the P.1 linage (Gamma variant). Serological responses against samples from vaccinated individuals were acquired with excellent performance. Following studies based on traditional serological tests, the ZnONRs/spike immunosensor data reveal that ChAdOx1-S vaccinated individuals present significantly less antibody-mediated immunity against the Gamma variant than the BNT162b2 vaccine, highlighting the great potential of this point-of-care technology for evaluating vaccine-induced humoral immunity against different SARS-CoV-2 strains.


Assuntos
COVID-19 , Vacinas , Óxido de Zinco , Humanos , Vacina BNT162 , SARS-CoV-2 , Vacinas contra COVID-19 , Estudos Soroepidemiológicos , COVID-19/diagnóstico , Anticorpos , Anticorpos Antivirais
5.
Immun Ageing ; 19(1): 57, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384671

RESUMO

BACKGROUND: Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated. RESULTS: Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN. CONCLUSION: These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.

6.
Front Immunol ; 13: 812126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300337

RESUMO

CoronaVac is an inactivated SARS-CoV-2 vaccine that has been rolled out in several low and middle-income countries including Brazil, where it was the mainstay of the first wave of immunization of healthcare workers and the elderly population. We aimed to assess the T cell and antibody responses of vaccinated individuals as compared to convalescent patients. We detected IgG against SARS-CoV-2 antigens, neutralizing antibodies against the reference Wuhan SARS-CoV-2 strain and used SARS-CoV-2 peptides to detect IFN-g and IL-2 specific T cell responses in a group of CoronaVac vaccinated individuals (N = 101) and convalescent (N = 72) individuals. The frequency among vaccinated individuals, of whom 96% displayed T cell and/or antibody responses to SARS-CoV-2, is comparable to 98.5% responses of convalescent individuals. We observed that among vaccinated individuals, men and individuals 55 years or older developed significantly lower anti-RBD, anti-NP and neutralization titers against the Wuhan strain and antigen-induced IL-2 production by T cells. Neutralizing antibody responses for Gamma variant were even lower than for the Wuhan strain. Even though some studies indicated CoronaVac helped reduce mortality among elderly people, considering the appearance of novel variants of concern, CoronaVac vaccinated individuals above 55 years old are likely to benefit from a heterologous third dose/booster vaccine to increase immune response and likely protection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Humanos , Imunização Secundária , Interleucina-2 , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Linfócitos T
7.
Open Biol ; 12(2): 210240, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104433

RESUMO

Recurrence of COVID-19 in recovered patients has been increasingly reported. However, the immune mechanisms behind the recurrence have not been thoroughly investigated. The presence of neutralizing antibodies (nAbs) in recurrence/reinfection cases suggests that other types of immune response are involved in protection against recurrence. Here, we investigated the innate type I/III interferon (IFN) response, binding and nAb assays and T-cell responses to severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) with IFN gamma (IFNγ) enzyme-linked spot assay (ELISPOT) in three pairs of young adult monozygotic (MZ) twins with previous confirmed COVID-19, one of them presenting a severe recurrence four months after the initial infection. Twin studies have been of paramount importance to comprehend the immunogenetics of infectious diseases. Each MZ twin pair was previously exposed to SARS-CoV-2, as seen by clinical reports. The six individuals presented similar overall recovered immune responses except for the recurrence case, who presented a drastically reduced number of recognized SARS-CoV-2 T-cell epitopes on ELISPOT as compared to her twin sister and the other twin pairs. Our results suggest that the lack of a broad T-cell response to initial infection may have led to recurrence, emphasizing that an effective SARS-CoV-2-specific T-cell immune response is key for complete viral control and avoidance of clinical recurrence of COVID-19.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Imunidade Celular , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Gêmeos Monozigóticos , Adolescente , Adulto , Feminino , Humanos , Masculino , Recidiva
8.
Int J Biol Sci ; 17(11): 2944-2956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345218

RESUMO

The generation of successful anticancer vaccines relies on the ability to induce efficient and long-lasting immune responses to tumor antigens. In this scenario, dendritic cells (DCs) are essential cellular components in the generation of antitumor immune responses. Thus, delivery of tumor antigens to specific DC populations represents a promising approach to enhance the efficiency of antitumor immunotherapies. In the present study, we employed antibody-antigen conjugates targeting a specific DC C-type lectin receptor. For that purpose, we genetically fused the anti-DEC205 monoclonal antibody to the type 16 human papillomavirus (HPV-16) E7 oncoprotein to create a therapeutic vaccine to treat HPV-associated tumors in syngeneic mouse tumor models. The therapeutic efficacy of the αDEC205-E7 mAb was investigated in three distinct anatomical tumor models (subcutaneous, lingual and intravaginal). The immunization regimen comprised two doses of the αDEC205-E7 mAb coadministered with a DC maturation stimulus (Polyinosinic:polycytidylic acid, poly (I:C)) as an adjuvant. The combined immunotherapy produced robust antitumor effects on both the subcutaneous and orthotopic tumor models, stimulating rapid tumor regression and long-term survival. These outcomes were related to the activation of tumor antigen-specific CD8+ T cells in both systemic compartments and lymphoid tissues. The αDEC205-E7 antibody plus poly (I:C) administration induced long-lasting immunity and controlled tumor relapses. Our results highlight that the delivery of HPV tumor antigens to DCs, particularly via the DEC205 surface receptor, is a promising therapeutic approach, providing new opportunities for the development of alternative immunotherapies for patients with HPV-associated tumors at different anatomical sites.


Assuntos
Antígenos CD/imunologia , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Lectinas Tipo C/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Neoplasias Experimentais/prevenção & controle , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Receptores de Superfície Celular/imunologia , Adjuvantes Imunológicos , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Feminino , Humanos , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/virologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Poli I-C/administração & dosagem
9.
Mol Cancer Ther ; 16(9): 1922-1933, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28522585

RESUMO

Cervical cancer is a major public health problem and one of the leading causes of cancer deaths in women. Virtually all cases of cervical cancer, as well as a growing share of anal and head/neck tumors, are associated with human papillomavirus (HPV) infection. Despite the effectiveness, the available prophylactic vaccines do not benefit women with cervical lesions or cancer. Therefore, the search of new immunotherapeutic approaches to treat HPV-induced tumors is still a priority. The present study characterizes a therapeutic antitumor vaccine based on the genetic fusion of the Herpes simplex virus-1 (HSV-1) glycoprotein D (gD) with the E7 oncoprotein from HPV-16 (gDE7). Two subcutaneous doses of gDE7, admixed with poly (I:C), conferred complete and long-lasting therapeutic antitumor protection on mice previously challenged with tumor cells expressing the HPV-16 oncoproteins. The vaccine induced multifunctional E7-specific CD8+ T cells with cytotoxic activity and effector memory phenotype (CD44+ CD62Llow). In addition, gDE7 admixed with poly (I:C) vaccination controlled the expansion of tumor-induced regulatory T cells and myeloid-derived suppressor cells. More importantly, gDE7 activated mouse CD11c+ CD8α+ and human BDCA3+ dendritic cells (DC), specialized in antigen cross-presentation to CD8+ T cells, under in vitro conditions. These results indicated that the activation of a specific DC population, mediated by gD, improved the antigen-specific immune responses and the therapeutic performance induced by antitumor vaccines. These results open perspectives for the clinical testing of gDE7-based vaccines under the concept of active immunization as a tool for the therapeutic control of cancer. Mol Cancer Ther; 16(9); 1922-33. ©2017 AACR.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Neoplasias/etiologia , Neoplasias/patologia , Papillomaviridae/imunologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Apresentação Cruzada/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Imunização , Memória Imunológica , Camundongos , Camundongos Knockout , Neoplasias/terapia , Proteínas E7 de Papillomavirus/imunologia , Poli I-C , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
10.
Sci Rep ; 6: 39250, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000705

RESUMO

In vivo antigen targeting to dendritic cells (DCs) has been used as a way to improve immune responses. Targeting is accomplished with the use of monoclonal antibodies (mAbs) to receptors present on the DC surface fused with the antigen of interest. An anti-DEC205 mAb has been successfully used to target antigens to the DEC205+CD8α+ DC subset. The administration of low doses of the hybrid mAb together with DC maturation stimuli is able to activate specific T cells and induce production of high antibody titres for a number of different antigens. However, it is still not known if this approach would work with any fused protein. Here we genetically fused the αDEC205 mAb with two fragments (42-kDa and 19-kDa) derived from the ~200 kDa Plasmodium vivax merozoite surface protein 1 (MSP1), known as MSP142 and MSP119, respectively. The administration of two doses of αDEC-MSP142, but not of αDEC-MSP119 mAb, together with an adjuvant to two mouse strains induced high anti-MSP119 antibody titres that were dependent on CD4+ T cells elicited by peptides present in the MSP133 sequence, indicating that the presence of T cell epitopes in antigens targeted to DEC205+ DCs increases antibody responses.


Assuntos
Formação de Anticorpos/fisiologia , Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Lectinas Tipo C/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Antígenos CD4/deficiência , Antígenos CD4/genética , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/metabolismo , Feminino , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Interferon gama/metabolismo , Interleucina-2/metabolismo , Proteína 1 de Superfície de Merozoito/química , Proteína 1 de Superfície de Merozoito/genética , Proteína 1 de Superfície de Merozoito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Baço/citologia , Baço/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
J Immunol Res ; 2016: 2926436, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27110574

RESUMO

Dendritic cells (DCs) play a central role in the initiation of adaptive immune responses, efficiently presenting antigens to T cells. This ability relies on the presence of numerous surface and intracellular receptors capable of sensing microbial components as well as inflammation and on a very efficient machinery for antigen presentation. In this way, DCs sense the presence of a myriad of pathogens, including Plasmodium spp., the causative agent of malaria. Despite many efforts to control this infection, malaria is still responsible for high rates of morbidity and mortality. Different groups have shown that DCs act during Plasmodium infection, and data suggest that the phenotypically distinct DCs subsets are key factors in the regulation of immunity during infection. In this review, we will discuss the importance of DCs for the induction of immunity against the different stages of Plasmodium, the outcomes of DCs activation, and also what is currently known about Plasmodium components that trigger such activation.


Assuntos
Células Dendríticas/imunologia , Malária/imunologia , Apresentação de Antígeno , Humanos , Testes Imunológicos , Estágios do Ciclo de Vida , Malária/parasitologia , Plasmodium/crescimento & desenvolvimento , Plasmodium/imunologia , Linfócitos T/imunologia
12.
PLoS One ; 10(2): e0117778, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25679777

RESUMO

Targeting antigens to dendritic cells (DCs) by using hybrid monoclonal antibodies (mAbs) directed against DC receptors is known to improve activation and support long-lasting T cell responses. In the present work, we used the mAb αDEC205 fused to the Trypanosoma cruzi amastigote surface protein 2 (ASP-2) to identify a region of this protein recognized by specific T cells. The hybrid αDEC-ASP2 mAb was successfully generated and preserved its ability to bind the DEC205 receptor. Immunization of BALB/c mice with the recombinant mAb in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)) specifically enhanced the number of IFN-γ producing cells and CD4+ T cell proliferation when compared to mice immunized with a mAb without receptor affinity or with the non-targeted ASP-2 protein. The strong immune response induced in mice immunized with the hybrid αDEC-ASP2 mAb allowed us to identify an ASP-2-specific CD4+ T cell epitope recognized by the BALB/c MHCII haplotype. We conclude that targeting parasite antigens to DCs is a useful strategy to enhance T cell mediated immune responses facilitating the identification of new T-cell epitopes.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Epitopos Imunodominantes/imunologia , Trypanosoma cruzi/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Formação de Anticorpos , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Linfócitos T CD4-Positivos/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Imunização , Camundongos , Neuraminidase/genética , Neuraminidase/imunologia , Peptídeos/imunologia , Ligação Proteica/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo
13.
Front Immunol ; 4: 487, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24432018

RESUMO

Native type I heat-labile toxins (LTs) produced by enterotoxigenic Escherichia coli (ETEC) strains exert strong adjuvant effects on both antibody and T cell responses to soluble and particulate antigens following co-administration via mucosal routes. However, inherent enterotoxicity and neurotoxicity (following intra-nasal delivery) had reduced the interest in the use of these toxins as mucosal adjuvants. LTs can also behave as powerful and safe adjuvants following delivery via parenteral routes, particularly for activation of cytotoxic lymphocytes. In the present study, we evaluated the adjuvant effects of a new natural LT polymorphic form (LT2), after delivery via intradermal (i.d.) and subcutaneous (s.c.) routes, with regard to both antibody and T cell responses. A recombinant HIV-1 p24 protein was employed as a model antigen for determination of antigen-specific immune responses while the reference LT (LT1), produced by the ETEC H10407 strain, and a non-toxigenic LT form (LTK63) were employed as previously characterized LT types. LT-treated mice submitted to a four dose-base immunization regimen elicited similar p24-specific serum IgG responses and CD4(+) T cell activation. Nonetheless, mice immunized with LT1 or LT2 induced higher numbers of antigen-specific CD8(+) T cells and in vivo cytotoxic responses compared to mice immunized with the non-toxic LT derivative. These effects were correlated with stronger activation of local dendritic cell populations. In addition, mice immunized with LT1 and LT2, but not with LTK63, via s.c. or i.d. routes developed local inflammatory reactions. Altogether, the present results confirmed that the two most prevalent natural polymorphic LT variants (LT1 or LT2) display similar and strong adjuvant effects for subunit vaccines administered via i.d. or s.c. routes.

14.
PLoS Negl Trop Dis ; 7(7): e2330, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23875054

RESUMO

Dengue is the most prevalent arboviral infection, affecting millions of people every year. Attempts to control such infection are being made, and the development of a vaccine is a World Health Organization priority. Among the proteins being tested as vaccine candidates in preclinical settings is the non-structural protein 1 (NS1). In the present study, we tested the immune responses generated by targeting the NS1 protein to two different dendritic cell populations. Dendritic cells (DCs) are important antigen presenting cells, and targeting proteins to maturing DCs has proved to be an efficient means of immunization. Antigen targeting is accomplished by the use of a monoclonal antibody (mAb) directed against a DC cell surface receptor fused to the protein of interest. We used two mAbs (αDEC205 and αDCIR2) to target two distinct DC populations, expressing either DEC205 or DCIR2 endocytic receptors, respectively, in mice. The fusion mAbs were successfully produced, bound to their respective receptors, and were used to immunize BALB/c mice in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)), as a DC maturation stimulus. We observed induction of strong anti-NS1 antibody responses and similar antigen binding affinity irrespectively of the DC population targeted. Nevertheless, the IgG1/IgG2a ratios were different between mouse groups immunized with αDEC-NS1 and αDCIR2-NS1 mAbs. When we tested the induction of cellular immune responses, the number of IFN-γ producing cells was higher in αDEC-NS1 immunized animals. In addition, mice immunized with the αDEC-NS1 mAb were significantly protected from a lethal intracranial challenge with the DENV2 NGC strain when compared to mice immunized with αDCIR2-NS1 mAb. Protection was partially mediated by CD4(+) and CD8(+) T cells as depletion of these populations reduced both survival and morbidity signs. We conclude that targeting the NS1 protein to the DEC205(+) DC population with poly (I:C) opens perspectives for dengue vaccine development.


Assuntos
Células Dendríticas/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Proteínas não Estruturais Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Dengue/administração & dosagem , Modelos Animais de Doenças , Humanos , Imunoglobulina G/sangue , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Poli I-C/administração & dosagem , Transporte Proteico , Análise de Sobrevida
15.
Vaccine ; 28(45): 7256-66, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20846528

RESUMO

Development of a fully effective vaccine against the pre-erythrocytic stage of malaria infection will likely require induction of both humoral and cellular immune responses. Protein based vaccines can elicit such broad-based immunity depending on the adjuvant and how the protein is formulated. Here to assess these variables, non human primates (NHP) were immunized three times with Plasmodium falciparum (Pf) circumsporozoite protein (CSP) or CSP cloned into MG38, a monoclonal antibody that targets DEC-205 (αDEC-CSP), an endocytic receptor on dendritic cells (DCs). Both vaccines were administered with or without poly(I:C) as adjuvant. Following three immunizations, the magnitude and quality of cytokine secreting CD4+ T cells were comparable between CSP+poly(I:C) and αDEC-CSP+poly(I:C) groups with both regimens eliciting multi-functional cytokine responses. However, NHP immunized with CSP+poly(I:C) had significantly higher serum titers of CSP-specific IgG antibodies and indirect immunofluorescent antibody (IFA) titers against Pf sporozoites. Furthermore, sera from both CSP or αDEC-CSP+poly(I:C) immunized animals limited sporozoite invasion of a hepatocyte cell line (HC04) in vitro. To determine whether CSP-specific responses could be enhanced, all NHP primed with CSP or αDEC-CSP+poly(I:C) were boosted with a single dose of 150,000 irradiated Pf sporozoites (PfSPZ) intravenously. Remarkably, boosting had no effect on the CSP-specific immunity. Finally, immunization with CSP+poly-ICLC reduced malaria parasite burden in the liver in an experimental mouse model. Taken together, these data showing that poly(I:C) is an effective adjuvant for inducing potent antibody and Th1 immunity with CSP based vaccines offers a potential alternative to the existing protein based pre-erythrocytic vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Poli I-C/farmacologia , Proteínas de Protozoários/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antiprotozoários/sangue , Linhagem Celular , Modelos Animais de Doenças , Feminino , Interferon gama/imunologia , Macaca mulatta , Malária Falciparum/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/imunologia , Poli I-C/administração & dosagem , Proteínas Recombinantes/imunologia , Esporozoítos/imunologia
16.
Infect Immun ; 78(11): 4763-72, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20713627

RESUMO

Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4(+) CD25(+) Foxp3(+) Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123(+)), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-α) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and long-lasting protective immunity to malaria.


Assuntos
Citocinas/sangue , Células Dendríticas/imunologia , Interações Hospedeiro-Parasita/imunologia , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Animais , Antígenos CD4/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Vivax/imunologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Especificidade da Espécie , Adulto Jovem
17.
Vaccine ; 28(29): 4644-52, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20451637

RESUMO

The live-attenuated yellow fever vaccine (YF17D) is one of the safest and most effective vaccines available today. Here, YF17D was genetically altered to express the circumsporozoite protein (CSP) from the murine malarial parasite Plasmodium yoelii. Reconstituted recombinant virus was viable and exhibited robust CSP expression. Immunization of naïve mice resulted in extensive proliferation of adoptively transferred CSP-specific transgenic CD8(+) T-cells. A single immunization of naïve mice with recombinant YF17D resulted in robust production of IFN-gamma by CD8(+) T-cells and IFN-gamma and IL-2 by CD4(+) T-cells. A prime-boost regimen consisting of recombinant virus followed by a low-dose of irradiated sporozoites conferred protection against challenge with P. yoelii. Taken together, these results show that recombinant YF17D can efficiently express CSP in culture, and prime a protective immune response in vivo.


Assuntos
Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Proteínas de Protozoários/imunologia , Vacina contra Febre Amarela/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Imunidade Celular , Imunização Secundária , Interferon gama/imunologia , Interleucina-2/imunologia , Malária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Plasmídeos , Plasmodium yoelii/imunologia , Vacinas Atenuadas/imunologia
18.
Vaccine ; 28(5): 1373-82, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19932669

RESUMO

Salmonella flagellin, the flagellum structural subunit, has received particular interest as a vaccine adjuvant conferring enhanced immunogenity to soluble proteins or peptides, both for activation of antibody and cellular immune responses. In the present study, we evaluated the Salmonella enterica FliCd flagellin as a T cell vaccine adjuvant using as model the 9-mer (SYVPSAEQI) synthetic H2(d)-restricted CD8(+) T cell-specific epitope (CS(280-288)) derived from the Plasmodium yoelii circumsporozoite (CS) protein. The FliCd adjuvant effects were determined under two different conditions: (i) as recombinant flagella, expressed by orally delivered live S. Dublin vaccine strains expressing the target CS(280-288) peptide fused at the central hypervariable domain, and (ii) as purified protein in acellular vaccines in which flagellin was administered to mice either as a recombinant protein fused or admixed with the target CS(280-288) peptide. The results showed that CS(280-288)-specific cytotoxic CD8(+) T cells were primed when BALB/c mice were orally inoculated with the expressing the CS(280-288) epitope S. Dublin vaccine strain. In contrast, mice immunized with purified FliCd admixed with the CS(280-288) peptide and, to a lesser extent, fused with the target peptide developed specific cytotoxic CD8(+) T cell responses without the need of a heterologous booster immunization. The CD8(+) T cell adjuvant effects of flagellin, either fused or not with the target peptide, correlated with the in vivo activation of CD11c(+) dendritic cells. Taken together, the present results demonstrate that Salmonella flagellins are flexible adjuvant and induce adaptative immune responses when administered by different routes or vaccine formulations.


Assuntos
Adjuvantes Imunológicos , Linfócitos T CD8-Positivos/imunologia , Flagelina , Vacinas Antimaláricas , Malária/imunologia , Plasmodium yoelii/imunologia , Proteínas de Protozoários , Proteínas Recombinantes de Fusão , Salmonella enterica/imunologia , Adjuvantes Imunológicos/biossíntese , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/farmacologia , Animais , Antígeno CD11c/imunologia , Células Dendríticas/imunologia , Flagelina/biossíntese , Flagelina/genética , Flagelina/imunologia , Flagelina/farmacologia , Imunidade Celular/imunologia , Malária/prevenção & controle , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Salmonella enterica/genética , Salmonella enterica/metabolismo
19.
J Exp Med ; 206(3): 497-505, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19221394

RESUMO

Presumptive dendritic cells (DCs) bearing the CD11c integrin and other markers have previously been identified in normal mouse and human aorta. We used CD11c promoter-enhanced yellow fluorescent protein (EYFP) transgenic mice to visualize aortic DCs and study their antigen-presenting capacity. Stellate EYFP(+) cells were readily identified in the aorta and could be double labeled with antibodies to CD11c and antigen-presenting major histocompatability complex (MHC) II products. The DCs proved to be particularly abundant in the cardiac valves and aortic sinus. In all aortic locations, the CD11c(+) cells localized to the subintimal space with occasional processes probing the vascular lumen. Aortic DCs expressed little CD40 but expressed low levels of CD1d, CD80, and CD86. In studies of antigen presentation, DCs selected on the basis of EYFP expression or binding of anti-CD11c antibody were as effective as DCs similarly selected from the spleen. In particular, the aortic DCs could cross-present two different protein antigens on MHC class I to CD8(+) TCR transgenic T cells. In addition, after intravenous injection, aortic DCs could capture anti-CD11c antibody and cross-present ovalbumin to T cells. These results indicate that bona fide DCs are a constituent of the normal aorta and cardiac valves.


Assuntos
Apresentação de Antígeno/imunologia , Aorta/citologia , Aorta/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Valvas Cardíacas/citologia , Valvas Cardíacas/imunologia , Animais , Antígenos/imunologia , Proteínas de Bactérias/metabolismo , Biomarcadores/metabolismo , Antígeno CD11c/imunologia , Membrana Celular/imunologia , Movimento Celular , Apresentação Cruzada/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Proteínas Recombinantes de Fusão/metabolismo , Seio Aórtico/citologia , Seio Aórtico/imunologia , Baço/citologia , Baço/imunologia
20.
Microbes Infect ; 9(8): 1011-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17548222

RESUMO

Several evidences suggest that the Amastigote Surface Protein-2 (ASP-2) of Trypanosoma cruzi is an important target for immunity during infection. Based on this, we considered it important to evaluate its strain polymorphism. Initially, we observed the presence of conserved cross-reactive epitopes in amastigotes of all parasite strains tested. In addition, the predicted amino acid sequences of the genes isolated from the cDNA of amastigotes of CL-Brener, Tulahuen, Colombian and G strains displayed a high degree of identity (>80%) to the previously described genes of ASP-2. Unexpectedly, Sylvio X10/4 and G strains expressed a new isoform of ASP-2 with limited identity to the previously described genes, but with a high degree of identity when compared to each other. Immunological studies confirmed the presence of cross-reactive epitopes between recombinant proteins representing the different isoforms of ASP-2. However, the genetic vaccination of mice with the new isoform of asp-2 gene expressed by the G strain failed to provide the same degree of protective immunity to a challenge by parasites of the Y strain as did asp-2 genes of Y or CL-Brener strains. In summary, we found that few strains can express different isoforms of ASP-2 which may not share cross-protective epitopes.


Assuntos
Isoenzimas , Neuraminidase , Polimorfismo Genético , Trypanosoma cruzi/classificação , Trypanosoma cruzi/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Doença de Chagas/prevenção & controle , Reações Cruzadas , Epitopos , Feminino , Variação Genética , Células HeLa , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/imunologia , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neuraminidase/química , Neuraminidase/genética , Neuraminidase/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA