Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 26(8): 107331, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37539043

RESUMO

To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatial contexts of the TME at multiple scales, including close and long-distance spatial interactions between cell type pairs. We applied this framework to a total of 1,393 multiplex imaging data newly generated from 88 primary central nervous system lymphomas with complete follow-up data and identified significant prognostic subgroups mainly shaped by the spatial context. A supervised analysis confirmed a significant contribution of spatial context in predicting patient survival. In particular, we found an opposite prognostic value of macrophage infiltration depending on its proximity to specific cell types. Altogether, we provide a comprehensive framework to analyze spatial cellular interaction that can be broadly applied to other technologies and tumor contexts.

2.
Biophys J ; 122(15): 3044-3059, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329137

RESUMO

Spontaneous calcium release by ryanodine receptors (RyRs) due to intracellular calcium overload results in delayed afterdepolarizations, closely associated with life-threatening arrhythmias. In this regard, inhibiting lysosomal calcium release by two-pore channel 2 (TPC2) knockout has been shown to reduce the incidence of ventricular arrhythmias under ß-adrenergic stimulation. However, mechanistic investigations into the role of lysosomal function on RyR spontaneous release remain missing. We investigate the calcium handling mechanisms by which lysosome function modulates RyR spontaneous release, and determine how lysosomes are able to mediate arrhythmias by its influence on calcium loading. Mechanistic studies were conducted using a population of biophysically detailed mouse ventricular models including for the first time modeling of lysosomal function, and calibrated by experimental calcium transients modulated by TPC2. We demonstrate that lysosomal calcium uptake and release can synergistically provide a pathway for fast calcium transport, by which lysosomal calcium release primarily modulates sarcoplasmic reticulum calcium reuptake and RyR release. Enhancement of this lysosomal transport pathway promoted RyR spontaneous release by elevating RyR open probability. In contrast, blocking either lysosomal calcium uptake or release revealed an antiarrhythmic impact. Under conditions of calcium overload, our results indicate that these responses are strongly modulated by intercellular variability in L-type calcium current, RyR release, and sarcoplasmic reticulum calcium-ATPase reuptake. Altogether, our investigations identify that lysosomal calcium handling directly influences RyR spontaneous release by regulating RyR open probability, suggesting antiarrhythmic strategies and identifying key modulators of lysosomal proarrhythmic action.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Arritmias Cardíacas/metabolismo , Adrenérgicos/metabolismo , Modelos Animais de Doenças , Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA