Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biotechnol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955569

RESUMO

3D printing has revolutionized bone tissue engineering (BTE) by enabling the fabrication of patient- or defect-specific scaffolds to enhance bone regeneration. The superior biocompatibility, customizable bioactivity, and biodegradability have enabled calcium phosphate (CaP) to gain significance as a bone graft material. 3D-printed (3DP) CaP scaffolds allow precise drug delivery due to their porous structure, adaptable structure-property relationship, dynamic chemistry, and controlled dissolution. The effectiveness of conventional scaffold-based drug delivery is hampered by initial burst release and drug loss. This review summarizes different multifunctional drug delivery approaches explored in controlling drug release, including polymer coatings, formulation integration, microporous scaffold design, chemical crosslinking, and direct extrusion printing for BTE applications. The review also outlines perspectives and future challenges in drug delivery research, paving the way for next-generation bone repair methodologies.

2.
Mater Chem Phys ; 3132024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38863477

RESUMO

Titanium alloys are widely used as implant materials due to their biocompatibility and superior mechanical properties for high-load-bearing applications. However, one of the major challenges is their inferior bioactivity and osseoconductivity. Hydroxyapatite is widely used as an alternative material for bone implants due to its compositional similarity to natural bone. In this study, hydroxyapatite is coated on Ti6Al4V discs to enhance its bioactivity. The coated discs are drop-casted with curcumin in the lower layer and vitamin C in the upper layer. This study aims to evaluate the effects of this dual drug delivery system on osteoblast cell proliferation, inhibition of osteoclastogenesis, chemo-preventive and infection control properties. The coating strength obtained is 22 ± 2 MPa. The release from the dual delivery system shows a 1.5-fold increase in osteoblast cell viability, a 1.5-fold reduction in osteoclast cell differentiation, a 2-fold decrease in osteosarcoma growth. The release of curcumin demonstrates a 94% antibacterial efficacy, while the release of vitamin C exhibits an efficacy of 98.6% aganist Staphylococcus aureus. This multifunctional system can be used as a potential implant for load-bearing applications.

3.
J Biomed Mater Res A ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894584

RESUMO

Increasing bone diseases and anomalies significantly challenge bone regeneration, necessitating the development of innovative implantable devices for effective healing. This study explores the potential of 3D-printed calcium phosphate (CaP) scaffolds functionalized with natural medicine to address this issue. Specifically, quercetin and vitamin D3 (QVD) encapsulated solid lipid nanoparticles (QVD-SLNs) are incorporated into the scaffold to enhance bone regeneration. The melt emulsification method is utilized to achieve high drug encapsulation efficiency (~98%) and controlled biphasic release kinetics. The process-structure-property performance of these systems allows more controlled release while maintaining healthy cell-material interactions. The functionalized scaffolds show ~1.3- and ~-1.6-fold increase in osteoblast cell proliferation and differentiation, respectively, as compared with the control. The treated scaffold demonstrates a reduction in osteoclastic activity as compared with the control. The QVD-SLN-loaded scaffolds show ~4.2-fold in vitro chemopreventive potential against osteosarcoma cells. Bacterial assessment with both Staphylococcus aureus and Pseudomonas aeruginosa shows a significant reduction in bacterial colony growth over the treated scaffold. These findings summarize that the release of QVD-SLNs through a 3D-printed CaP scaffold can treat various bone-related disorders for low or non-load-bearing applications.

4.
J Am Ceram Soc ; 107(4): 2081-2092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38855017

RESUMO

Since antiquity, the medicinal properties of naturally sourced biomolecules such as ginger (Zingiber officinale) extract are documented in the traditional Indian and Chinese medical systems. However, limited work is performed to assess the potential of ginger extracts for bone-tissue engineering. Our work demonstrates the direct incorporation of ginger extract on iron oxide-magnesium oxide (Fe2O3 and MgO) co-doped hydroxyapatite (HA) for enhancement in the biological properties. The addition of Fe2O3 and MgO co-doping system and ginger extract with HA increases the osteoblast viability up to ~ 1.4 times at day 11. The presence of ginger extract leads to up to ~ 9 times MG-63 cell viability reduction. The co-doping does not adversely affect the release of ginger extract from the graft surface in the biological medium at pH 7.4 for up to 28 days. Assessment of antibacterial efficacy according to the modified ISO 22196: 2011 standard method indicates that the combined effects of Fe2O3, MgO, and ginger extract lead to ~ 82 % more bacterial cell reduction, compared to the control HA against S. aureus. These ginger extract-loaded artificial bone grafts with enhanced biological properties may be utilized as a localized site-specific delivery vehicle for various bone tissue engineering applications.

5.
J Biomed Mater Res A ; 112(9): 1472-1483, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38477071

RESUMO

Critical-sized bone defects pose a significant challenge in advanced healthcare due to limited bone tissue regenerative capacity. The complex interplay of numerous overlapping variables hinders the development of multifunctional biocomposites. Phytochemicals show promise in promoting bone growth, but their dose-dependent nature and physicochemical properties halt clinical use. To develop a comprehensive solution, a 3D-printed (3DP) extrusion-based tricalcium phosphate-polycaprolactone (TCP-PCL) scaffold is augmented with quercetin and potassium chloride (KCl). This composite material demonstrates a compressive strength of 30 MPa showing promising stability for low load-bearing applications. Quercetin release from the scaffold follows a biphasic pattern that persists for up to 28 days, driven via diffusion-mediated kinetics. The incorporation of KCl allows for tunable degradation rates of scaffolds and prevents the initial rapid release. Functionalization of scaffolds facilitates the attachment and proliferation of human fetal osteoblasts (hfOB), resulting in a 2.1-fold increase in cell viability. Treated scaffolds exhibit a 3-fold reduction in osteosarcoma (MG-63) cell viability as compared to untreated substrates. Ruptured cell morphology and decreased mitochondrial membrane potential indicate the antitumorigenic potential. Scaffolds loaded with quercetin and quercetin-KCl (Q-KCl) demonstrate 76% and 89% reduction in bacterial colonies of Staphylococcus aureus, respectively. This study provides valuable insights as a promising strategy for bone tissue engineering (BTE) in orthopedic repair.


Assuntos
Fosfatos de Cálcio , Poliésteres , Impressão Tridimensional , Quercetina , Engenharia Tecidual , Alicerces Teciduais , Quercetina/farmacologia , Quercetina/química , Humanos , Poliésteres/química , Engenharia Tecidual/métodos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Alicerces Teciduais/química , Osso e Ossos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral
6.
Cont Lens Anterior Eye ; 47(2): 102129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423868

RESUMO

PURPOSE: To evaluate the in vitro wettability and coefficient of friction of a novel amphiphilic polymeric surfactant (APS), poly(oxyethylene)-co-poly(oxybutylene) (PEO-PBO) releasing silicone hydrogel (SiHy) contact lens material (serafilcon A), compared to other reusable SiHy lens materials. METHODS: The release of fluorescently-labelled nitrobenzoxadiazole (NBD)-PEO-PBO was evaluated from serafilcon A over 7 days in a vial. The wettability and coefficient of friction of serafilcon A and three contemporary SiHy contact lens materials (senofilcon A; samfilcon A; comfilcon A) were evaluated using an in vitro blink model over their recommended wearing period; t = 0, 1, 7, 14 days for all lens types and t = 30 days for samfilcon A and comfilcon A (n = 4). Sessile drop contact angles were determined and in vitro non-invasive keratographic break-up time (NIKBUT) measurements were assessed on a blink model via the OCULUS Keratograph 5 M. The coefficient of friction was measured using a nano tribometer. RESULTS: The relative fluorescence of NBD-PEO-PBO decreased in serafilcon A by approximately 18 % after 7 days. The amount of NBD-PEO-PBO released on day 7 was 50 % less than the amount released on day 1 (6.5±1.0 vs 3.4±0.5 µg/lens). The reduction in PEO-PBO in the lens also coincided with an increase in contact angles for serafilcon A after 7 days (p < 0.05), although there were no changes in NIKBUT or coefficient of friction (p > 0.05). The other contact lens materials had stable contact angles and NIKBUT over their recommended wearing period (p > 0.05), with the exception of samfilcon A, which had an increase in contact angle after 14 days as compared to t = 0 (p < 0.05). Senofilcon A and samfilcon A also showed an increase in coefficient of friction at 14 and 30 days, respectively, compared to their blister pack values (p < 0.05). CONCLUSION: The results indicate that serafilcon A gradually depletes its reserve of PEO-PBO over 1 week, but this decrease did not significantly change the lens performance in vitro during this time frame.


Assuntos
Lentes de Contato Hidrofílicas , Silicones , Humanos , Molhabilidade , Hidrogéis , Fricção
7.
ACS Biomater Sci Eng ; 10(3): 1676-1685, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38386843

RESUMO

Regenerating bone tissue in critical-sized craniofacial bone defects remains challenging and requires the implementation of innovative bone implants with early stage osteogenesis and blood vessel formation. Vitamin D3 is incorporated into MgO-doped 3D-printed scaffolds for defect-specific and patient-specific implants in low load-bearing areas. This novel bone implant also promotes early stage osteogenesis and blood vessel development. Our results show that vitamin D3-loaded MgO-doped 3D-printed scaffolds enhance osteoblast cell proliferation 1.3-fold after being cultured for 7 days. Coculture studies on osteoblasts derived from human mesenchymal stem cells (hMSCs) and osteoclasts derived from monocytes show the upregulation of genes related to osteoblastogenesis and the downregulation of RANK-L, which is essential for osteoclastogenesis. Release of vitamin D3 also inhibits osteoclast differentiation by 1.9-fold after a 21-day culture. After 6 weeks, vitamin D3 release from MgO-doped 3D-printed scaffolds enhances the new bone formation, mineralization, and angiogenic potential. The multifunctional 3D-printed scaffolds can improve early stage osteogenesis and blood vessel formation in craniofacial bone defects.


Assuntos
Óxido de Magnésio , Alicerces Teciduais , Humanos , Óxido de Magnésio/farmacologia , Colecalciferol/farmacologia , Impressão Tridimensional , Regeneração Óssea
8.
J Med Chem ; 67(4): 2745-2757, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38146876

RESUMO

Bone damage resulting from trauma or aging poses challenges in clinical settings that need to be addressed using bone tissue engineering (BTE). Carvacrol (CA) possesses anti-inflammatory, anticancer, and antibacterial properties. Limited solubility and physicochemical stability restrict its biological activity, requiring a stable carrier system for delivery. Here, we investigate the utilization of a three-dimensional printed (3DP) SiO2-doped tricalcium phosphate (TCP) scaffold functionalized with carvacrol-loaded lipid nanoparticles (CA-LNPs) to improve bone health. It exhibits a negative surface charge with an entrapment efficiency of ∼97% and size ∼129 nm with polydispersity index (PDI) and zeta potential values of 0.18 and -16 mV, respectively. CA-LNPs exhibit higher and long-term release over 35 days. The CA-LNP loaded SiO2-doped TCP scaffold demonstrates improved antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa by >90% reduction in bacterial growth. Functionalized scaffolds result in 3-fold decrease and 2-fold increase in osteosarcoma and osteoblast cell viability, respectively. These findings highlight the therapeutic potential of the CA-LNP loaded SiO2-doped TCP scaffold for bone defect treatment.


Assuntos
Neoplasias Ósseas , Fosfatos de Cálcio , Cimenos , Nanopartículas , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Dióxido de Silício/farmacologia , Impressão Tridimensional , Antibacterianos/farmacologia , Osteogênese
9.
Artigo em Inglês | MEDLINE | ID: mdl-38863680

RESUMO

Natural medicinal compounds (NMCs) can assist effectively in treating bone disorders. NMC release kinetics from a ceramic bone tissue engineering scaffold can be tailored. However, inferior physicochemical properties halt their therapeutic applications and need a carrier system for delivery. We developed a multi-functionalized scaffold to understand the effect of curcumin (Cur) and resveratrol (Rsv) on in vitro biological properties. Polycaprolactone (PCL) nanoparticles encapsulated resveratrol in the polymeric matrix. Nanoparticles showed a hydrodynamic diameter of about 180 nm, - 16 mV zeta potential, and up to ~65 % encapsulation efficiency. Scaffolds made of zinc-doped tricalcium phosphate (Zn-TCP) were coated with curcumin followed by either resveratrol (Cur-Rsv) or resveratrol nanoparticles (Cur-Rsv-NP). NMC-loaded scaffolds exhibited a biphasic release pattern over 60 days. Solubility and hydrophobic-hydrophilic interactions affected the NMC release profile. Resveratrol showed rapid release as compared to curcumin. The treated scaffold increased the cell viability of human fetal osteoblast (hFOB) by 1.8-fold as compared to the control. It exhibited a 6-fold increase in cytotoxicity toward osteosarcoma (MG-63) cells as compared to the untreated scaffold. NMCs loaded scaffold effectively inhibited Staphylococcus aureus from colonizing over the scaffold. Zinc doping enhanced osteoblast growth and prevented bacterial colony formation. Such design principle provided a direction for developing multi-functionalized calcium phosphate (CaP) scaffolds against bone diseases for orthopedic applications.

10.
Pharmaceutics ; 16(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38258038

RESUMO

PURPOSE: The purpose of this study was to develop an enzyme-triggered, therapeutic-releasing bandage contact lens material using a unique gelatin methacrylate formulation (GelMA+). METHODS: Two GelMA+ formulations, 20% w/v, and 30% w/v concentrations, were prepared through UV polymerization. The physical properties of the material, including porosity, tensile strain, and swelling ratio, were characterized. The enzymatic degradation of the material was assessed in the presence of matrix metalloproteinase-9 (MMP-9) at concentrations ranging from 0 to 300 µg/mL. Cell viability, cell growth, and cytotoxicity on the GelMA+ gels were evaluated using the AlamarBlueTM assay and the LIVE/DEADTM Viability/Cytotoxicity kit staining with immortalized human corneal epithelial cells over 5 days. For drug release analysis, the 30% w/v gels were loaded with 3 µg of bovine lactoferrin (BLF) as a model drug, and its release was examined over 5 days under various MMP-9 concentrations. RESULTS: The 30% w/v GelMA+ demonstrated higher crosslinking density, increased tensile strength, smaller pore size, and lower swelling ratio (p < 0.05). In contrast, the 20% w/v GelMA+ degraded at a significantly faster rate (p < 0.001), reaching almost complete degradation within 48 h in the presence of 300 µg/mL of MMP-9. No signs of cytotoxic effects were observed in the live/dead staining assay for either concentration after 5 days. However, the 30% w/v GelMA+ exhibited significantly higher cell viability (p < 0.05). The 30% w/v GelMA+ demonstrated sustained release of the BLF over 5 days. The release rate of BLF increased significantly with higher concentrations of MMP-9 (p < 0.001), corresponding to the degradation rate of the gels. DISCUSSION: The release of BLF from GelMA+ gels was driven by a combination of diffusion and degradation of the material by MMP-9 enzymes. This work demonstrated that a GelMA+-based material that releases a therapeutic agent can be triggered by enzymes found in the tear fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA