Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Khim ; 58(5): 579-91, 2012.
Artigo em Russo | MEDLINE | ID: mdl-23289300

RESUMO

A biodegradable polymer of bacterial origin, poly(3-hydroxybutyrate) (PHB), is intensively studied as biomaterial for tissue engineering. However, factors determining its biocompatibility still require better understanding. To analyze the PHB films biocompatibility, the polymer material was modified by hydrophilic polymer, poly(ethylene glycol) 300 (PEG). The blends PHB/PEG with different PEG content (10, 20, 30 and 50%) were produced by subsequent incubation in water resulted in removal of 95% PEG. The surface roughness and hydrophilicity were studied by atomic force microscopy (AFM) and contact angle "water-polymer" measurement, respectively. The film biocompatibility on cell culture of COS-1 fibroblasts was studied in vitro. It was shown that both roughness and hydrophobicity are directly proportional to initial PEG content in the PHB/PEG blends. The growth rate of COS-1 fibroblasts on polymer films is determined by combination of two basic physicochemical properties of the polymer surface: the roughness and hydrophilicity. The optimal roughness requred for COS-1 cells growth is the average roughness more than 25 nm, whereas the limit values of the contact angle "water-polymer" that was responsible for relatively high cell viability were not found. These data indicate that the film surface roughness had the greatest effect on the cell growth, whereas the increase in the polymer surface hydrophilicity caused the additional positive effect on viability of attached cells. Thus, the modification of PHB polymer material by PEG resulted in the improved viability of cells cultivated on the polymer films in vitro. The obtained data can be used for development of such medical devices as surgeon patches and periodontal membranes.


Assuntos
Hidroxibutiratos/química , Membranas Artificiais , Poliésteres/química , Polietilenoglicóis/química , Implantes Absorvíveis , Animais , Células COS , Adesão Celular , Sobrevivência Celular , Chlorocebus aethiops , Teste de Materiais , Propriedades de Superfície
2.
Biomed Khim ; 55(6): 702-12, 2009.
Artigo em Russo | MEDLINE | ID: mdl-20469718

RESUMO

The aim of this study was to evaluate and to compare of long-term kinetics curves of biodegradation of poly(3-hydroxybutyrate) (PHB), its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and PHB/polylactic acid blend. The total weight loss and the change of average viscosity molecular weight were used as an index of biodegradation degree. The rate of biodegradation was analyzed in vitro in presence oflipase and in vivo when the films were implanted in animal tissues. The morphology of PHB films surface was studied by atomic force microscopy technique. It was shown that biodegradation of PHB is occurred by means of as polymer hydrolysis, and as its enzymatic biodegradation. The obtained data can be used for development of medical devices on the base of PHB.


Assuntos
Implantes Absorvíveis , Hidroxibutiratos/farmacocinética , Ácido Láctico/farmacocinética , Poliésteres/farmacocinética , Polímeros/farmacocinética , Animais , Cinética , Masculino , Microscopia de Força Atômica , Proibitinas , Ratos , Ratos Wistar , Viscosidade
3.
Prikl Biokhim Mikrobiol ; 42(6): 710-5, 2006.
Artigo em Russo | MEDLINE | ID: mdl-17168302

RESUMO

New poly-(3-hydroxybutyrate)-based systems for controlled release of anti-inflammatory and antithrombogenic drugs have been studied. The release occurs via two mechanisms (diffusion and degradation) operating simultaneously. Dipyridamole and indomethacin diffusion processes determine the rate of the release at the early stages of the contact of the system with the environment (the first 6-8 days). The coefficient of the release diffusion of a drug depends on its nature, the thickness of the poly-(3-hydroxybutyrate) films containing the drug, the concentrations of dipyridamole and indomethacin, and the molecular weight of the poly-(3-hydroxybutyrate). The results obtained are critical for developing systems of release of diverse drugs, thus, enabling the attainment of the requisite physiological effects on tissues and organs of humans.


Assuntos
Azotobacter/crescimento & desenvolvimento , Dipiridamol/metabolismo , Hidroxibutiratos/metabolismo , Indometacina/metabolismo , Microbiologia Industrial/métodos , Poliésteres/metabolismo , Azotobacter/genética , Azotobacter/metabolismo , Preparações de Ação Retardada , Difusão , Dipiridamol/administração & dosagem , Hidroxibutiratos/química , Indometacina/administração & dosagem , Cinética , Peso Molecular , Poliésteres/química , Polímeros/química , Polímeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA