Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621992

RESUMO

Phase entrainment of cells by theta oscillations is thought to globally coordinate the activity of cell assemblies across different structures, such as the hippocampus and neocortex. This coordination is likely required for optimal processing of sensory input during recognition and decision-making processes. In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (dHC). Rats discriminated between two 3D objects presented in tactile-only, visual-only, or both tactile and visual modalities. During task engagement, S1BF, V2L, PER, and dHC LFP signals showed coherent theta-band activity. We found phase entrainment of single-cell spiking activity to locally recorded as well as hippocampal theta activity in S1BF, V2L, PER, and dHC. While phase entrainment of hippocampal spikes to local theta oscillations occurred during sustained epochs of task trials and was nonselective for behavior and modality, somatosensory and visual cortical cells were only phase entrained during stimulus presentation, mainly in their preferred modality (S1BF, tactile; V2L, visual), with subsets of cells selectively phase-entrained during cross-modal stimulus presentation (S1BF: visual; V2L: tactile). This effect could not be explained by modulations of firing rate or theta amplitude. Thus, hippocampal cells are phase entrained during prolonged epochs, while sensory and perirhinal neurons are selectively entrained during sensory stimulus presentation, providing a brief time window for coordination of activity.


Assuntos
Discriminação Psicológica , Neurônios , Córtex Somatossensorial , Ritmo Teta , Córtex Visual , Animais , Masculino , Ritmo Teta/fisiologia , Córtex Somatossensorial/fisiologia , Córtex Visual/fisiologia , Discriminação Psicológica/fisiologia , Neurônios/fisiologia , Hipocampo/fisiologia , Percepção Visual/fisiologia , Percepção do Tato/fisiologia , Potenciais de Ação/fisiologia , Ratos Long-Evans , Ratos
2.
Cell Rep ; 42(10): 113249, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37837620

RESUMO

Cognitive functioning requires coordination between brain areas. Between visual areas, feedforward gamma synchronization improves behavioral performance. Here, we investigate whether similar principles hold across brain regions and frequency bands, using simultaneous electrocorticographic recordings from 15 areas of two macaque monkeys during performance of a selective attention task. Short behavioral reaction times (RTs), suggesting efficient interareal communication, occurred when occipital areas V1, V2, V4, and DP showed gamma synchronization, and fronto-central areas S1, 5, F1, F2, and F4 showed beta synchronization. For both area clusters and corresponding frequency bands, deviations from the typically observed phase relations increased RTs. Across clusters and frequency bands, good phase relations occurred in a correlated manner specifically when they processed the behaviorally relevant stimulus. Furthermore, the fronto-central cluster exerted a beta-band influence onto the occipital cluster whose strength predicted short RTs. These results suggest that local gamma and beta synchronization and their inter-regional coordination jointly improve behavioral performance.


Assuntos
Córtex Visual , Percepção Visual , Animais , Macaca , Encéfalo , Atenção , Estimulação Luminosa/métodos , Haplorrinos , Sincronização Cortical
3.
Neuroimage ; 281: 120375, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714390

RESUMO

Selective attention implements preferential routing of attended stimuli, likely through increasing the influence of the respective synaptic inputs on higher-area neurons. As the inputs of competing stimuli converge onto postsynaptic neurons, presynaptic circuits might offer the best target for attentional top-down influences. If those influences enabled presynaptic circuits to selectively entrain postsynaptic neurons, this might explain selective routing. Indeed, when two visual stimuli induce two gamma rhythms in V1, only the gamma induced by the attended stimulus entrains gamma in V4. Here, we modelled induced responses with a Dynamic Causal Model for Cross-Spectral Densities and found that selective entrainment can be explained by attentional modulation of intrinsic V1 connections. Specifically, local inhibition was decreased in the granular input layer and increased in the supragranular output layer of the V1 circuit that processed the attended stimulus. Thus, presynaptic attentional influences and ensuing entrainment were sufficient to mediate selective routing.

4.
PLoS One ; 18(4): e0284735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079581

RESUMO

Throughout the last decades, understanding the neural mechanisms of sensory processing has been a key objective for neuroscientists. Many studies focused on uncovering the microcircuit-level architecture of somatosensation using the rodent whisker system as a model. Although these studies have significantly advanced our understanding of tactile processing, the question remains to what extent the whisker system can provide results translatable to the human somatosensory system. To address this, we developed a restrained vibrotactile detection task involving the limb system in mice. A vibrotactile stimulus was delivered to the hindlimb of head-fixed mice, who were trained to perform a Go/No-go detection task. Mice were able to learn this task with satisfactory performance and with reasonably short training times. In addition, the task we developed is versatile, as it can be combined with diverse neuroscience methods. Thus, this study introduces a novel task to study the neuron-level mechanisms of tactile processing in a system other than the more commonly studied whisker system.


Assuntos
Percepção do Tato , Tato , Camundongos , Humanos , Animais , Membro Posterior , Vibrissas , Extremidade Inferior , Córtex Somatossensorial
5.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945499

RESUMO

Cognitive functioning requires coordination between brain areas. Between visual areas, feedforward gamma synchronization improves behavioral performance. Here, we investigate whether similar principles hold across brain regions and frequency bands, using simultaneous local field potential recordings from 15 areas during performance of a selective attention task. Short behavioral reaction times (RTs), an index of efficient interareal communication, occurred when occipital areas V1, V2, V4, DP showed gamma synchronization, and fronto-central areas S1, 5, F1, F2, F4 showed beta synchronization. For both area clusters and corresponding frequency bands, deviations from the typically observed phase relations increased RTs. Across clusters and frequency bands, good phase relations occurred in a correlated manner specifically when they processed the behaviorally relevant stimulus. Furthermore, the fronto-central cluster exerted a beta-band influence onto the occipital cluster whose strength predicted short RTs. These results suggest that local gamma and beta synchronization and their inter-regional coordination jointly improve behavioral performance.

6.
Cereb Cortex ; 33(12): 7564-7581, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36935096

RESUMO

Behavioral states affect neuronal responses throughout the cortex and influence visual processing. Quiet wakefulness (QW) is a behavioral state during which subjects are quiescent but awake and connected to the environment. Here, we examined the effects of pre-stimulus arousal variability on post-stimulus neural activity in the primary visual cortex and posterior parietal cortex in awake ferrets, using pupil diameter as an indicator of arousal. We observed that the power of stimuli-induced alpha (8-12 Hz) decreases when the arousal level increases. The peak of alpha power shifts depending on arousal. High arousal increases inter- and intra-areal coherence. Using a simplified model of laminar circuits, we show that this connectivity pattern is compatible with feedback signals targeting infragranular layers in area posterior parietal cortex and supragranular layers in V1. During high arousal, neurons in V1 displayed higher firing rates at their preferred orientations. Broad-spiking cells in V1 are entrained to high-frequency oscillations (>80 Hz), whereas narrow-spiking neurons are phase-locked to low- (12-18 Hz) and high-frequency (>80 Hz) rhythms. These results indicate that the variability and sensitivity of post-stimulus cortical responses and coherence depend on the pre-stimulus behavioral state and account for the neuronal response variability observed during repeated stimulation.


Assuntos
Nível de Alerta , Córtex Visual Primário , Animais , Furões , Nível de Alerta/fisiologia , Vigília/fisiologia , Córtex Visual Primário/fisiologia , Estimulação Luminosa , Feminino
7.
Nat Commun ; 13(1): 2019, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440540

RESUMO

Circuits of excitatory and inhibitory neurons generate gamma-rhythmic activity (30-80 Hz). Gamma-cycles show spontaneous variability in amplitude and duration. To investigate the mechanisms underlying this variability, we recorded local-field-potentials (LFPs) and spikes from awake macaque V1. We developed a noise-robust method to detect gamma-cycle amplitudes and durations, which showed a weak but positive correlation. This correlation, and the joint amplitude-duration distribution, is well reproduced by a noise-driven damped harmonic oscillator. This model accurately fits LFP power-spectra, is equivalent to a linear, noise-driven E-I circuit, and recapitulates two additional features of gamma: (1) Amplitude-duration correlations decrease with oscillation strength; (2) amplitudes and durations exhibit strong and weak autocorrelations, respectively, depending on oscillation strength. Finally, longer gamma-cycles are associated with stronger spike-synchrony, but lower spike-rates in both (putative) excitatory and inhibitory neurons. In sum, V1 gamma-dynamics are well described by the simplest possible model of gamma: A damped harmonic oscillator driven by noise.


Assuntos
Ritmo Gama , Neurônios , Potenciais de Ação/fisiologia , Animais , Ritmo Gama/fisiologia , Macaca , Neurônios/fisiologia , Vigília
8.
Neuron ; 109(23): 3862-3878.e5, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672985

RESUMO

Cognitive functions are subserved by rhythmic neuronal synchronization across widely distributed brain areas. In 105 area pairs, we investigated functional connectivity (FC) through coherence, power correlation, and Granger causality (GC) in the theta, beta, high-beta, and gamma rhythms. Between rhythms, spatial FC patterns were largely independent. Thus, the rhythms defined distinct interaction networks. Importantly, networks of coherence and GC were not explained by the spatial distributions of the strengths of the rhythms. Those networks, particularly the GC networks, contained clear modules, with typically one dominant rhythm per module. To understand how this distinctiveness and modularity arises on a common anatomical backbone, we correlated, across 91 area pairs, the metrics of functional interaction with those of anatomical projection strength. Anatomy was primarily related to coherence and GC, with the largest effect sizes for GC. The correlation differed markedly between rhythms, being less pronounced for the beta and strongest for the gamma rhythm.


Assuntos
Encéfalo , Ritmo Gama , Encéfalo/fisiologia , Cognição , Ritmo Gama/fisiologia , Neurônios
9.
Front Hum Neurosci ; 15: 630813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833671

RESUMO

Selective attention depends on goal-directed and stimulus-driven modulatory factors, each relayed by different brain rhythms. Under certain circumstances, stress-related states can change the balance between goal-directed and stimulus-driven factors. However, the neuronal mechanisms underlying these changes remain unclear. In this study, we explored how psychosocial stress can modulate brain rhythms during an attentional task and a task-free period. We recorded the EEG and ECG activity of 42 healthy participants subjected to either the Trier Social Stress Test (TSST), a controlled procedure to induce stress, or a comparable control protocol (same physical and cognitive effort but without the stress component), flanked by an attentional task, a 90 s of task-free period and a state of anxiety questionnaire. We observed that psychosocial stress induced an increase in heart rate (HR), self-reported anxiety, and alpha power synchronization. Also, psychosocial stress evoked a relative beta power increase during correct trials of the attentional task, which correlates positively with anxiety and heart rate increase, and inversely with attentional accuracy. These results suggest that psychosocial stress affects performance by redirecting attentional resources toward internal threat-related thoughts. An increment of endogenous top-down modulation reflected an increased beta-band activity that may serve as a compensatory mechanism to redirect attentional resources toward the ongoing task. The data obtained here may contribute to designing new ways of clinical management of the human stress response in the future and could help to minimize the damaging effects of persistent stressful experiences.

10.
Cortex ; 132: 135-146, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32979847

RESUMO

Some patients with severe brain injury show short-term neurological improvements, such as recovery of consciousness, motor function, or speech after administering zolpidem, a GABA receptor agonist. The working mechanism of this paradoxical phenomenon remains unknown. In this study, we used electroencephalography and magnetoencephalography to investigate a spectacular zolpidem-induced awakening, including the recovery of functional communication and the ability to walk in a patient with severe hypoxic-ischemic brain injury. We show that cognitive deficits, speech loss, and motor impairments after severe brain injury are associated with stronger beta band connectivity throughout the brain and suggest that neurological recovery after zolpidem occurs with the restoration of beta band connectivity. This exploratory work proposes an essential role for beta rhythms in goal-directed behavior and cognition. It advocates further fundamental and clinical research on the role of increased beta band connectivity in the development of neurological deficits after severe brain injury.


Assuntos
Lesões Encefálicas , Medicamentos Indutores do Sono , Encéfalo/diagnóstico por imagem , Lesões Encefálicas/tratamento farmacológico , Eletroencefalografia , Humanos , Magnetoencefalografia
11.
Front Syst Neurosci ; 13: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680883

RESUMO

Top-down, feedback projections account for a large portion of all connections between neurons in the thalamocortical system, yet their precise role remains the subject of much discussion. A large number of studies has focused on investigating how sensory information is transformed across hierarchically-distributed processing stages in a feedforward fashion, and computational models have shown that purely feedforward artificial neural networks can even outperform humans in pattern classification tasks. What is then the functional role of feedback connections? Several key roles have been identified, ranging from attentional modulation to, crucially, conscious perception. Specifically, most of the major theories on consciousness postulate that feedback connections would play an essential role in enabling sensory information to be consciously perceived. Consequently, it follows that their efficacy in modulating target regions should drastically decrease in nonconscious brain states [non-rapid eye movement (REM) sleep, anesthesia] compared to conscious ones (wakefulness), and also in instances when a given sensory stimulus is not perceived compared to when it is. Until recently, however, this prediction could only be tested with correlative experiments, due to the lack of techniques to selectively manipulate and measure the activity of feedback pathways. In this article, we will review the most recent literature on the functions of feedback connections across brain states and based on the presence or absence of perception. We will focus on experiments studying mismatch negativity, a phenomenon which has been hypothesized to rely on top-down modulation but which persists during nonconscious states. While feedback modulation is generally dampened in nonconscious states and enhanced when perception occurs, there are clear deviations from this rule. As we will discuss, this may pose a challenge to most theories of consciousness, and possibly require a change in how the level of consciousness in supposedly nonconscious states is assessed.

13.
Neuron ; 100(4): 953-963.e3, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30318415

RESUMO

Behavior is often driven by visual stimuli, relying on feedforward communication from lower to higher visual areas. Effective communication depends on enhanced interareal coherence, but it remains unclear whether this coherence occurs at an optimal phase relation that actually improves stimulus transmission to behavioral report. We recorded local field potentials from V1 and V4 of macaques performing an attention task during which they reported changes in the attended stimulus. V1-V4 gamma synchronization immediately preceding the stimulus change partly predicted subsequent reaction times (RTs). RTs slowed systematically as trial-by-trial interareal gamma phase relations deviated from the phase relation at which V1 and V4 synchronized on average. V1-V4 gamma phase relations accounted for RT differences of 13-31 ms. Effects were specific to the attended stimulus and not explained by local power or phase. Thus, interareal gamma synchronization occurs at the optimal phase relation for transmission of sensory inputs to motor responses.


Assuntos
Ritmo Gama/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Macaca mulatta , Masculino , Distribuição Aleatória
14.
Proc Natl Acad Sci U S A ; 115(24): E5614-E5623, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29848632

RESUMO

Theta rhythms govern rodent sniffing and whisking, and human language processing. Human psychophysics suggests a role for theta also in visual attention. However, little is known about theta in visual areas and its attentional modulation. We used electrocorticography (ECoG) to record local field potentials (LFPs) simultaneously from areas V1, V2, V4, and TEO of two macaque monkeys performing a selective visual attention task. We found a ≈4-Hz theta rhythm within both the V1-V2 and the V4-TEO region, and theta synchronization between them, with a predominantly feedforward directed influence. ECoG coverage of large parts of these regions revealed a surprising spatial correspondence between theta and visually induced gamma. Furthermore, gamma power was modulated with theta phase. Selective attention to the respective visual stimulus strongly reduced these theta-rhythmic processes, leading to an unusually strong attention effect for V1. Microsaccades (MSs) were partly locked to theta. However, neuronal theta rhythms tended to be even more pronounced for epochs devoid of MSs. Thus, we find an MS-independent theta rhythm specific to visually driven parts of V1-V2, which rhythmically modulates local gamma and entrains V4-TEO, and which is strongly reduced by attention. We propose that the less theta-rhythmic and thereby more continuous processing of the attended stimulus serves the exploitation of this behaviorally most relevant information. The theta-rhythmic and thereby intermittent processing of the unattended stimulus likely reflects the ecologically important exploration of less relevant sources of information.


Assuntos
Atenção/fisiologia , Ritmo Teta/fisiologia , Córtex Visual/fisiologia , Animais , Eletrocorticografia/métodos , Potenciais Evocados Visuais/fisiologia , Macaca , Masculino , Neurônios/fisiologia , Estimulação Luminosa/métodos , Campos Visuais/fisiologia , Percepção Visual/fisiologia
15.
Front Psychol ; 9: 423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670554

RESUMO

Face-to-face communication has several sources of contextual information that enables language comprehension. This information is used, for instance, to perceive mood of interlocutors, clarifying ambiguous messages. However, these contextual cues are absent in text-based communication. Emoticons have been proposed as cues used to stress the emotional intentions on this channel of communication. Most studies have suggested that their role is to contribute to a more accurate perception of emotions. Nevertheless, it is not clear if their influence on disambiguation is independent of their emotional valence and its interaction with text message valence. In the present study, we designed an emotional congruence paradigm, where participants read a set of messages composed by a positive or negative emotional situation sentence followed by a positive or negative emoticon. Participants were instructed to indicate if the sender was in a good or bad mood. With the aim of analyzing the disambiguation process and observing if the role of the emoticons in disambiguation is different according their valence, we measure the rate of responses of perceived mood and the reaction times (RTs) for each condition. Our results showed that the perceived mood in ambiguous messages tends to be more negative regardless of emotion valence. Nonetheless, we observed that this tendency was not the same for positive and negative emoticons. Specifically, negative mood perception was higher for incongruent positive emoticons. On the other hand, RTs for positive emoticons were faster than for the negative ones. Responses for incongruent messages were slower than for the congruent ones. However, the incongruent condition showed different RTs depending on the emoticons' valence. In the incongruent condition, responses for negative emoticons was the slowest. Results are discussed taking into account previous observations about the potential role of emoticons in mood perception and cognitive processing. We concluded that the role of emoticons in disambiguation and mood perception is due to the interaction of emoticon valence with the entire message.

16.
Neurobiol Dis ; 114: 65-73, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29486296

RESUMO

Neuronal networks can synchronize their activity through excitatory and inhibitory connections, which is conducive to synaptic plasticity. This synchronization is reflected in rhythmic fluctuations of the extracellular field. In the hippocampus, theta and gamma band LFP oscillations are a hallmark of the processing of spatial information and memory. Fragile X syndrome (FXS) is an intellectual disability and the most common genetic cause of autism spectrum disorder (Belmonte and Bourgeron, 2006). Here, we investigated how neuronal network synchronization in the mouse hippocampus is compromised by the Fmr1 mutation that causes FXS (Santos et al., 2014), relating recently observed single-cell level impairments (Arbab et al., 2017) to neuronal network aberrations. We implanted tetrodes in hippocampus of freely moving Fmr1-KO and littermate wildtype (WT) mice (Mientjes et al., 2006), to record spike trains from multiple, isolated neurons as well as LFPs in a spatial exploration paradigm. Compared to wild type mice, Fmr1-KO mice displayed greater power of hippocampal theta oscillations, and higher coherence in the slow gamma band. Additionally, spike trains of Fmr1-KO interneurons show decreased spike-count correlations and they are hypersynchronized with theta and slow gamma oscillations. The hypersynchronization of Fmr1-KO oscillations and spike timing reflects functional deficits in local networks. This network hypersynchronization pathologically decreases the heterogeneity of spike-LFP phase coupling, compromising information processing within the hippocampal circuit. These findings may reflect a pathophysiological mechanism explaining cognitive impairments in FXS and autism, in which there is anomalous processing of social and environmental cues and associated deficits in memory and cognition.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/fisiopatologia , Ritmo Gama/fisiologia , Hipocampo/fisiopatologia , Rede Nervosa/fisiopatologia , Ritmo Teta/fisiologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Masculino , Camundongos , Camundongos Knockout
17.
J Neurosci ; 37(28): 6698-6711, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28592697

RESUMO

Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes may implement top-down control of stimulus processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. To test this possibility, we investigated Granger-causal influences among awake macaque primary visual area V1, higher visual area V4, and parietal control area 7a during attentional task performance. Top-down 7a-to-V1 beta-band influences enhanced visually driven V1-to-V4 gamma-band influences. This enhancement was spatially specific and largest when beta-band activity preceded gamma-band activity by ∼0.1 s, suggesting a causal effect of top-down processes on bottom-up processes. We propose that this cross-frequency interaction mechanistically subserves the attentional control of stimulus selection.SIGNIFICANCE STATEMENT Contemporary research indicates that the alpha-beta frequency band underlies top-down control, whereas the gamma-band mediates bottom-up stimulus processing. This arrangement inspires an attractive hypothesis, which posits that top-down beta-band influences directly modulate bottom-up gamma band influences via cross-frequency interaction. We evaluate this hypothesis determining that beta-band top-down influences from parietal area 7a to visual area V1 are correlated with bottom-up gamma frequency influences from V1 to area V4, in a spatially specific manner, and that this correlation is maximal when top-down activity precedes bottom-up activity. These results show that for top-down processes such as spatial attention, elevated top-down beta-band influences directly enhance feedforward stimulus-induced gamma-band processing, leading to enhancement of the selected stimulus.


Assuntos
Atenção/fisiologia , Ritmo beta/fisiologia , Sincronização Cortical/fisiologia , Ritmo Gama/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Macaca mulatta , Masculino , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Estimulação Luminosa , Campos Visuais/fisiologia
18.
Front Syst Neurosci ; 10: 35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199684

RESUMO

During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30-90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other's CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that is particularly information-rich and sparse.

19.
Proc Natl Acad Sci U S A ; 113(5): E606-15, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787906

RESUMO

Intrinsic covariation of brain activity has been studied across many levels of brain organization. Between visual areas, neuronal activity covaries primarily among portions with similar retinotopic selectivity. We hypothesized that spontaneous interareal coactivation is subserved by neuronal synchronization. We performed simultaneous high-density electrocorticographic recordings across the dorsal aspect of several visual areas in one hemisphere in each of two awake monkeys to investigate spatial patterns of local and interareal synchronization. We show that stimulation-induced patterns of interareal coactivation were reactivated in the absence of stimulation for the visual quadrant covered. Reactivation occurred through both interareal cofluctuation of local activity and interareal phase synchronization. Furthermore, the trial-by-trial covariance of the induced responses recapitulated the pattern of interareal coupling observed during stimulation, i.e., the signal correlation. Reactivation-related synchronization showed distinct peaks in the theta, alpha, and gamma frequency bands. During passive states, this rhythmic reactivation was augmented by specific patterns of arrhythmic correspondence. These results suggest that networks of intrinsic covariation observed at multiple levels and with several recording techniques are related to synchronization and that behavioral state may affect the structure of intrinsic dynamics.


Assuntos
Córtex Visual/fisiologia , Animais , Eletroencefalografia , Haplorrinos
20.
Front Neurosci ; 9: 303, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388716

RESUMO

Regardless of major anatomical and neurodevelopmental differences, the vertebrate isocortex shows a remarkably well-conserved organization. In the isocortex, reciprocal connections between excitatory and inhibitory neurons are distributed across multiple layers, encompassing modular, dynamical and recurrent functional networks during information processing. These dynamical brain networks are often organized in neuronal assemblies interacting through rhythmic phase relationships. Accordingly, these oscillatory interactions are observed across multiple brain scale levels, and they are associated with several sensory, motor, and cognitive processes. Most notably, oscillatory interactions are also found in the complete spectrum of vertebrates. Yet, it is unknown why this functional organization is so well conserved in evolution. In this perspective, we propose some ideas about how functional requirements of the isocortex can account for the evolutionary stability observed in microcircuits across vertebrates. We argue that isocortex architectures represent canonical microcircuits resulting from: (i) the early selection of neuronal architectures based on the oscillatory excitatory-inhibitory balance, which lead to the implementation of compartmentalized oscillations and (ii) the subsequent emergence of inferential coding strategies (predictive coding), which are able to expand computational capacities. We also argue that these functional constraints may be the result of several advantages that oscillatory activity contributes to brain network processes, such as information transmission and code reliability. In this manner, similarities in mesoscale brain circuitry and input-output organization between different vertebrate groups may reflect evolutionary constraints imposed by these functional requirements, which may or may not be traceable to a common ancestor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA