Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Br J Clin Pharmacol ; 90(1): 164-175, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567767

RESUMO

AIMS: Knowledge about adverse drug events caused by drug-drug interactions (DDI-ADEs) is limited. We aimed to provide detailed insights about DDI-ADEs related to three frequent, high-risk potential DDIs (pDDIs) in the critical care setting: pDDIs with international normalized ratio increase (INR+ ) potential, pDDIs with acute kidney injury (AKI) potential, and pDDIs with QTc prolongation potential. METHODS: We extracted routinely collected retrospective data from electronic health records of intensive care units (ICUs) patients (≥18 years), admitted to ten hospitals in the Netherlands between January 2010 and September 2019. We used computerized triggers (e-triggers) to preselect patients with potential DDI-ADEs. Between September 2020 and October 2021, clinical experts conducted a retrospective manual patient chart review on a subset of preselected patients, and assessed causality, severity, preventability, and contribution to ICU length of stay of DDI-ADEs using internationally prevailing standards. RESULTS: In total 85 422 patients with ≥1 pDDI were included. Of these patients, 32 820 (38.4%) have been exposed to one of the three pDDIs. In the exposed group, 1141 (3.5%) patients were preselected using e-triggers. Of 237 patients (21%) assessed, 155 (65.4%) experienced an actual DDI-ADE; 52.9% had severity level of serious or higher, 75.5% were preventable, and 19.3% contributed to a longer ICU length of stay. The positive predictive value was the highest for DDI-INR+ e-trigger (0.76), followed by DDI-AKI e-trigger (0.57). CONCLUSION: The highly preventable nature and severity of DDI-ADEs, calls for action to optimize ICU patient safety. Use of e-triggers proved to be a promising preselection strategy.


Assuntos
Injúria Renal Aguda , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Estudos Retrospectivos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Interações Medicamentosas , Unidades de Terapia Intensiva , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/epidemiologia
2.
J Crit Care ; 79: 154461, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37951771

RESUMO

PURPOSE: To investigate the development in quality of ICU care over time using the Dutch National Intensive Care Evaluation (NICE) registry. MATERIALS AND METHODS: We included data from all ICU admissions in the Netherlands from those ICUs that submitted complete data between 2009 and 2021 to the NICE registry. We determined median and interquartile range for eight quality indicators. To evaluate changes over time on the indicators, we performed multilevel regression analyses, once without and once with the COVID-19 years 2020 and 2021 included. Additionally we explored between-ICU heterogeneity by calculating intraclass correlation coefficients (ICC). RESULTS: 705,822 ICU admissions from 55 (65%) ICUs were included in the analyses. ICU length of stay (LOS), duration of mechanical ventilation (MV), readmissions, in-hospital mortality, hypoglycemia, and pressure ulcers decreased significantly between 2009 and 2019 (OR <1). After including the COVID-19 pandemic years, the significant change in MV duration, ICU LOS, and pressure ulcers disappeared. We found an ICC ≤0.07 on the quality indicators for all years, except for pressure ulcers with an ICC of 0.27 for 2009 to 2021. CONCLUSIONS: Quality of Dutch ICU care based on seven indicators significantly improved from 2009 to 2019 and between-ICU heterogeneity is medium to small, except for pressure ulcers. The COVID-19 pandemic disturbed the trend in quality improvement, but unaltered the between-ICU heterogeneity.


Assuntos
COVID-19 , Úlcera por Pressão , Humanos , Melhoria de Qualidade , Pandemias , Unidades de Terapia Intensiva , Tempo de Internação , Sistema de Registros , Mortalidade Hospitalar , COVID-19/terapia
3.
Ann Intensive Care ; 12(1): 99, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264358

RESUMO

BACKGROUND: For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patients will benefit may help allocate labor resources. METHODS: From the multi-center Dutch Data Warehouse of COVID-19 ICU patients from 25 hospitals, we selected all 3619 episodes of prone positioning in 1142 invasively mechanically ventilated patients. We excluded episodes longer than 24 h. Berlin ARDS criteria were not formally documented. We used supervised machine learning algorithms Logistic Regression, Random Forest, Naive Bayes, K-Nearest Neighbors, Support Vector Machine and Extreme Gradient Boosting on readily available and clinically relevant features to predict success of prone positioning after 4 h (window of 1 to 7 h) based on various possible outcomes. These outcomes were defined as improvements of at least 10% in PaO2/FiO2 ratio, ventilatory ratio, respiratory system compliance, or mechanical power. Separate models were created for each of these outcomes. Re-supination within 4 h after pronation was labeled as failure. We also developed models using a 20 mmHg improvement cut-off for PaO2/FiO2 ratio and using a combined outcome parameter. For all models, we evaluated feature importance expressed as contribution to predictive performance based on their relative ranking. RESULTS: The median duration of prone episodes was 17 h (11-20, median and IQR, N = 2632). Despite extensive modeling using a plethora of machine learning techniques and a large number of potentially clinically relevant features, discrimination between responders and non-responders remained poor with an area under the receiver operator characteristic curve of 0.62 for PaO2/FiO2 ratio using Logistic Regression, Random Forest and XGBoost. Feature importance was inconsistent between models for different outcomes. Notably, not even being a previous responder to prone positioning, or PEEP-levels before prone positioning, provided any meaningful contribution to predicting a successful next proning episode. CONCLUSIONS: In mechanically ventilated COVID-19 patients, predicting the success of prone positioning using clinically relevant and readily available parameters from electronic health records is currently not feasible. Given the current evidence base, a liberal approach to proning in all patients with severe COVID-19 ARDS is therefore justified and in particular regardless of previous results of proning.

4.
Crit Care ; 26(1): 265, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064438

RESUMO

BACKGROUND: Adequate antibiotic dosing may improve outcomes in critically ill patients but is challenging due to altered and variable pharmacokinetics. To address this challenge, AutoKinetics was developed, a decision support system for bedside, real-time, data-driven and personalised antibiotic dosing. This study evaluates the feasibility, safety and efficacy of its clinical implementation. METHODS: In this two-centre randomised clinical trial, critically ill patients with sepsis or septic shock were randomised to AutoKinetics dosing or standard dosing for four antibiotics: vancomycin, ciprofloxacin, meropenem, and ceftriaxone. Adult patients with a confirmed or suspected infection and either lactate > 2 mmol/L or vasopressor requirement were eligible for inclusion. The primary outcome was pharmacokinetic target attainment in the first 24 h after randomisation. Clinical endpoints included mortality, ICU length of stay and incidence of acute kidney injury. RESULTS: After inclusion of 252 patients, the study was stopped early due to the COVID-19 pandemic. In the ciprofloxacin intervention group, the primary outcome was obtained in 69% compared to 3% in the control group (OR 62.5, CI 11.4-1173.78, p < 0.001). Furthermore, target attainment was faster (26 h, CI 18-42 h, p < 0.001) and better (65% increase, CI 49-84%, p < 0.001). For the other antibiotics, AutoKinetics dosing did not improve target attainment. Clinical endpoints were not significantly different. Importantly, higher dosing did not lead to increased mortality or renal failure. CONCLUSIONS: In critically ill patients, personalised dosing was feasible, safe and significantly improved target attainment for ciprofloxacin. TRIAL REGISTRATION: The trial was prospectively registered at Netherlands Trial Register (NTR), NL6501/NTR6689 on 25 August 2017 and at the European Clinical Trials Database (EudraCT), 2017-002478-37 on 6 November 2017.


Assuntos
COVID-19 , Sepse , Choque Séptico , Adulto , Antibacterianos , Ciprofloxacina/uso terapêutico , Estado Terminal/terapia , Humanos , Pandemias , Sepse/tratamento farmacológico , Choque Séptico/tratamento farmacológico
5.
Shock ; 58(5): 358-365, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36155964

RESUMO

ABSTRACT: Background: Aims of this study were to investigate the prevalence and incidence of catheter-related infection, identify risk factors, and determine the relation of catheter-related infection with mortality in critically ill COVID-19 patients. Methods: This was a retrospective cohort study of central venous catheters (CVCs) in critically ill COVID-19 patients. Eligible CVC insertions required an indwelling time of at least 48 hours and were identified using a full-admission electronic health record database. Risk factors were identified using logistic regression. Differences in survival rates at day 28 of follow-up were assessed using a log-rank test and proportional hazard model. Results: In 538 patients, a total of 914 CVCs were included. Prevalence and incidence of suspected catheter-related infection were 7.9% and 9.4 infections per 1,000 catheter indwelling days, respectively. Prone ventilation for more than 5 days was associated with increased risk of suspected catheter-related infection; odds ratio, 5.05 (95% confidence interval 2.12-11.0). Risk of death was significantly higher in patients with suspected catheter-related infection (hazard ratio, 1.78; 95% confidence interval, 1.25-2.53). Conclusions: This study shows that in critically ill patients with COVID-19, prevalence and incidence of suspected catheter-related infection are high, prone ventilation is a risk factor, and mortality is higher in case of catheter-related infection.


Assuntos
COVID-19 , Infecções Relacionadas a Cateter , Cateterismo Venoso Central , Cateteres Venosos Centrais , Humanos , Infecções Relacionadas a Cateter/epidemiologia , Infecções Relacionadas a Cateter/etiologia , Cateterismo Venoso Central/efeitos adversos , Estado Terminal , Incidência , Estudos Retrospectivos , COVID-19/epidemiologia , Cateteres Venosos Centrais/efeitos adversos , Fatores de Risco
6.
Int J Med Inform ; 167: 104863, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162166

RESUMO

PURPOSE: To assess, validate and compare the predictive performance of models for in-hospital mortality of COVID-19 patients admitted to the intensive care unit (ICU) over two different waves of infections. Our models were built with high-granular Electronic Health Records (EHR) data versus less-granular registry data. METHODS: Observational study of all COVID-19 patients admitted to 19 Dutch ICUs participating in both the national quality registry National Intensive Care Evaluation (NICE) and the EHR-based Dutch Data Warehouse (hereafter EHR). Multiple models were developed on data from the first 24 h of ICU admissions from February to June 2020 (first COVID-19 wave) and validated on prospective patients admitted to the same ICUs between July and December 2020 (second COVID-19 wave). We assessed model discrimination, calibration, and the degree of relatedness between development and validation population. Coefficients were used to identify relevant risk factors. RESULTS: A total of 1533 patients from the EHR and 1563 from the registry were included. With high granular EHR data, the average AUROC was 0.69 (standard deviation of 0.05) for the internal validation, and the AUROC was 0.75 for the temporal validation. The registry model achieved an average AUROC of 0.76 (standard deviation of 0.05) in the internal validation and 0.77 in the temporal validation. In the EHR data, age, and respiratory-system related variables were the most important risk factors identified. In the NICE registry data, age and chronic respiratory insufficiency were the most important risk factors. CONCLUSION: In our study, prognostic models built on less-granular but readily-available registry data had similar performance to models built on high-granular EHR data and showed similar transportability to a prospective COVID-19 population. Future research is needed to verify whether this finding can be confirmed for upcoming waves.


Assuntos
COVID-19 , COVID-19/epidemiologia , Registros Eletrônicos de Saúde , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Países Baixos/epidemiologia , Sistema de Registros , Estudos Retrospectivos
7.
Acta Anaesthesiol Scand ; 66(1): 65-75, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34622441

RESUMO

BACKGROUND: The prediction of in-hospital mortality for ICU patients with COVID-19 is fundamental to treatment and resource allocation. The main purpose was to develop an easily implemented score for such prediction. METHODS: This was an observational, multicenter, development, and validation study on a national critical care dataset of COVID-19 patients. A systematic literature review was performed to determine variables possibly important for COVID-19 mortality prediction. Using a logistic multivariable model with a LASSO penalty, we developed the Rapid Evaluation of Coronavirus Illness Severity (RECOILS) score and compared its performance against published scores. RESULTS: Our development (validation) cohort consisted of 1480 (937) adult patients from 14 (11) Dutch ICUs admitted between March 2020 and April 2021. Median age was 65 (65) years, 31% (26%) died in hospital, 74% (72%) were males, average length of ICU stay was 7.83 (10.25) days and average length of hospital stay was 15.90 (19.92) days. Age, platelets, PaO2/FiO2 ratio, pH, blood urea nitrogen, temperature, PaCO2, Glasgow Coma Scale (GCS) score measured within +/-24 h of ICU admission were used to develop the score. The AUROC of RECOILS score was 0.75 (CI 0.71-0.78) which was higher than that of any previously reported predictive scores (0.68 [CI 0.64-0.71], 0.61 [CI 0.58-0.66], 0.67 [CI 0.63-0.70], 0.70 [CI 0.67-0.74] for ISARIC 4C Mortality Score, SOFA, SAPS-III, and age, respectively). CONCLUSIONS: Using a large dataset from multiple Dutch ICUs, we developed a predictive score for mortality of COVID-19 patients admitted to ICU, which outperformed other predictive scores reported so far.


Assuntos
COVID-19 , Adulto , Idoso , Cuidados Críticos , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Masculino , Estudos Multicêntricos como Assunto , Estudos Observacionais como Assunto , Gravidade do Paciente , Prognóstico , Estudos Retrospectivos , SARS-CoV-2
8.
Crit Care ; 25(1): 448, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961537

RESUMO

INTRODUCTION: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19. METHODS: We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analysis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We trained and validated multiple machine learning algorithms using fivefold nested cross-validation. Predictor importance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed extubation were estimated through partial dependence plots. RESULTS: A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient-boost model performed best (area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher C-reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body mass index compared to their medians were associated with extubation failure. CONCLUSION: The most important predictors for extubation failure in critically ill COVID-19 patients include ventilatory settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be routinely captured in electronic health records.


Assuntos
Extubação , COVID-19 , Falha de Tratamento , Adulto , COVID-19/terapia , Estado Terminal , Humanos , Aprendizado de Máquina
9.
Crit Care Explor ; 3(10): e0555, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34671747

RESUMO

OBJECTIVES: As coronavirus disease 2019 is a novel disease, treatment strategies continue to be debated. This provides the intensive care community with a unique opportunity as the population of coronavirus disease 2019 patients requiring invasive mechanical ventilation is relatively homogeneous compared with other ICU populations. We hypothesize that the novelty of coronavirus disease 2019 and the uncertainty over its similarity with noncoronavirus disease 2019 acute respiratory distress syndrome resulted in substantial practice variation between hospitals during the first and second waves of coronavirus disease 2019 patients. DESIGN: Multicenter retrospective cohort study. SETTING: Twenty-five hospitals in the Netherlands from February 2020 to July 2020, and 14 hospitals from August 2020 to December 2020. PATIENTS: One thousand two hundred ninety-four critically ill intubated adult ICU patients with coronavirus disease 2019 were selected from the Dutch Data Warehouse. Patients intubated for less than 24 hours, transferred patients, and patients still admitted at the time of data extraction were excluded. MEASUREMENTS AND MAIN RESULTS: We aimed to estimate between-ICU practice variation in selected ventilation parameters (positive end-expiratory pressure, Fio2, set respiratory rate, tidal volume, minute volume, and percentage of time spent in a prone position) on days 1, 2, 3, and 7 of intubation, adjusted for patient characteristics as well as severity of illness based on Pao2/Fio2 ratio, pH, ventilatory ratio, and dynamic respiratory system compliance during controlled ventilation. Using multilevel linear mixed-effects modeling, we found significant (p ≤ 0.001) variation between ICUs in all ventilation parameters on days 1, 2, 3, and 7 of intubation for both waves. CONCLUSIONS: This is the first study to clearly demonstrate significant practice variation between ICUs related to mechanical ventilation parameters that are under direct control by intensivists. Their effect on clinical outcomes for both coronavirus disease 2019 and other critically ill mechanically ventilated patients could have widespread implications for the practice of intensive care medicine and should be investigated further by causal inference models and clinical trials.

10.
Trials ; 22(1): 546, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407846

RESUMO

BACKGROUND: High-dose intravenous vitamin C directly scavenges and decreases the production of harmful reactive oxygen species (ROS) generated during ischemia/reperfusion after a cardiac arrest. The aim of this study is to investigate whether short-term treatment with a supplementary or very high-dose intravenous vitamin C reduces organ failure in post-cardiac arrest patients. METHODS: This is a double-blind, multi-center, randomized placebo-controlled trial conducted in 7 intensive care units (ICUs) in The Netherlands. A total of 270 patients with cardiac arrest and return of spontaneous circulation will be randomly assigned to three groups of 90 patients (1:1:1 ratio, stratified by site and age). Patients will intravenously receive a placebo, a supplementation dose of 3 g of vitamin C or a pharmacological dose of 10 g of vitamin C per day for 96 h. The primary endpoint is organ failure at 96 h as measured by the Resuscitation-Sequential Organ Failure Assessment (R-SOFA) score at 96 h minus the baseline score (delta R-SOFA). Secondary endpoints are a neurological outcome, mortality, length of ICU and hospital stay, myocardial injury, vasopressor support, lung injury score, ventilator-free days, renal function, ICU-acquired weakness, delirium, oxidative stress parameters, and plasma vitamin C concentrations. DISCUSSION: Vitamin C supplementation is safe and preclinical studies have shown beneficial effects of high-dose IV vitamin C in cardiac arrest models. This is the first RCT to assess the clinical effect of intravenous vitamin C on organ dysfunction in critically ill patients after cardiac arrest. TRIAL REGISTRATION: ClinicalTrials.gov NCT03509662. Registered on April 26, 2018. https://clinicaltrials.gov/ct2/show/NCT03509662 European Clinical Trials Database (EudraCT): 2017-004318-25. Registered on June 8, 2018. https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-004318-25/NL.


Assuntos
Síndrome Pós-Parada Cardíaca , Ácido Ascórbico , Método Duplo-Cego , Humanos , Estudos Multicêntricos como Assunto , Escores de Disfunção Orgânica , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
11.
Crit Care ; 25(1): 304, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425864

RESUMO

BACKGROUND: The Coronavirus disease 2019 (COVID-19) pandemic has underlined the urgent need for reliable, multicenter, and full-admission intensive care data to advance our understanding of the course of the disease and investigate potential treatment strategies. In this study, we present the Dutch Data Warehouse (DDW), the first multicenter electronic health record (EHR) database with full-admission data from critically ill COVID-19 patients. METHODS: A nation-wide data sharing collaboration was launched at the beginning of the pandemic in March 2020. All hospitals in the Netherlands were asked to participate and share pseudonymized EHR data from adult critically ill COVID-19 patients. Data included patient demographics, clinical observations, administered medication, laboratory determinations, and data from vital sign monitors and life support devices. Data sharing agreements were signed with participating hospitals before any data transfers took place. Data were extracted from the local EHRs with prespecified queries and combined into a staging dataset through an extract-transform-load (ETL) pipeline. In the consecutive processing pipeline, data were mapped to a common concept vocabulary and enriched with derived concepts. Data validation was a continuous process throughout the project. All participating hospitals have access to the DDW. Within legal and ethical boundaries, data are available to clinicians and researchers. RESULTS: Out of the 81 intensive care units in the Netherlands, 66 participated in the collaboration, 47 have signed the data sharing agreement, and 35 have shared their data. Data from 25 hospitals have passed through the ETL and processing pipeline. Currently, 3464 patients are included in the DDW, both from wave 1 and wave 2 in the Netherlands. More than 200 million clinical data points are available. Overall ICU mortality was 24.4%. Respiratory and hemodynamic parameters were most frequently measured throughout a patient's stay. For each patient, all administered medication and their daily fluid balance were available. Missing data are reported for each descriptive. CONCLUSIONS: In this study, we show that EHR data from critically ill COVID-19 patients may be lawfully collected and can be combined into a data warehouse. These initiatives are indispensable to advance medical data science in the field of intensive care medicine.


Assuntos
COVID-19/epidemiologia , Estado Terminal/epidemiologia , Data Warehousing/estatística & dados numéricos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Unidades de Terapia Intensiva/estatística & dados numéricos , Cuidados Críticos , Humanos , Países Baixos
12.
Intensive Care Med Exp ; 9(1): 32, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34180025

RESUMO

BACKGROUND: The identification of risk factors for adverse outcomes and prolonged intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, determining treatment intensity, and resource allocation. Previous studies have determined risk factors on admission only, and included a limited number of predictors. Therefore, using data from the highly granular and multicenter Dutch Data Warehouse, we developed machine learning models to identify risk factors for ICU mortality, ventilator-free days and ICU-free days during the course of invasive mechanical ventilation (IMV) in COVID-19 patients. METHODS: The DDW is a growing electronic health record database of critically ill COVID-19 patients in the Netherlands. All adult ICU patients on IMV were eligible for inclusion. Transfers, patients admitted for less than 24 h, and patients still admitted at time of data extraction were excluded. Predictors were selected based on the literature, and included medication dosage and fluid balance. Multiple algorithms were trained and validated on up to three sets of observations per patient on day 1, 7, and 14 using fivefold nested cross-validation, keeping observations from an individual patient in the same split. RESULTS: A total of 1152 patients were included in the model. XGBoost models performed best for all outcomes and were used to calculate predictor importance. Using Shapley additive explanations (SHAP), age was the most important demographic risk factor for the outcomes upon start of IMV and throughout its course. The relative probability of death across age values is visualized in Partial Dependence Plots (PDPs), with an increase starting at 54 years. Besides age, acidaemia, low P/F-ratios and high driving pressures demonstrated a higher probability of death. The PDP for driving pressure showed a relative probability increase starting at 12 cmH2O. CONCLUSION: Age is the most important demographic risk factor of ICU mortality, ICU-free days and ventilator-free days throughout the course of invasive mechanical ventilation in critically ill COVID-19 patients. pH, P/F ratio, and driving pressure should be monitored closely over the course of mechanical ventilation as risk factors predictive of these outcomes.

13.
Front Microbiol ; 12: 779805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185812

RESUMO

BACKGROUND: Selective Decontamination of the Digestive tract (SDD) aims to prevent nosocomial infections, by eradication of potentially pathogenic micro-organisms from the digestive tract. OBJECTIVES: To estimate the rate of and the time to eradication of resistant vs. susceptible facultative aerobic gram-negative bacteria (AGNB) in patients treated with SDD. METHODS: This observational and retrospective study included patients admitted to the ICU between January 2001 and August 2017. Patients were included when treated with SDD (tobramycin, polymyxin B, and amphotericin B) and colonized in the upper or lower gastro-intestinal (GI) tract with at least one AGNB present on admission. Decontamination was determined after the first negative set of cultures (rectal and throat). An additional analysis was performed of two consecutive negative cultures. RESULTS: Of the 281 susceptible AGNB in the throat and 1,087 in the rectum on admission, 97.9 and 93.7%, respectively, of these microorganisms were successfully eradicated. In the upper GI-tract no differences in eradication rates were found between susceptible and resistant microorganisms. However, the median duration until eradication was significantly longer for aminoglycosides resistant vs. susceptible microorganisms (5 vs. 4 days, p < 0.01). In the lower GI-tract, differences in eradication rates between susceptible and resistant microorganisms were found for cephalosporins (90.0 vs. 95.6%), aminoglycosides (84.4 vs. 95.5%) and ciprofloxacin (90.0 vs. 95.2%). Differences in median duration until eradication between susceptible and resistant microorganisms were found for aminoglycosides and ciprofloxacin (both 5 days vs. 6 days, p = 0.001). Decontamination defined as two negative cultures was achieved in a lower rate (77-98% for the upper GI tract and 64-77% for the lower GI tract) and a median of 1 day later. CONCLUSION: The vast majority of both susceptible and resistant microorganisms are effectively eradicated from the upper and lower GI tract. In the lower GI tract decontamination rates of susceptible microorganisms are significantly higher and achieved in a shorter time period compared to resistant strains.

14.
Br J Clin Pharmacol ; 87(3): 1234-1242, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32715505

RESUMO

AIMS: To explore the optimal data sampling scheme and the pharmacokinetic (PK) target exposure on which dose computation is based in the model-based therapeutic drug monitoring (TDM) practice of vancomycin in intensive care (ICU) patients. METHODS: We simulated concentration data for 1 day following four sampling schemes, Cmin , Cmax + Cmin , Cmax + Cmid-interval + Cmin , and rich sampling where a sample was drawn every hour within a dose interval. The datasets were used for Bayesian estimation to obtain PK parameters, which were used to compute the doses for the next day based on five PK target exposures: AUC24 = 400, 500, and 600 mg·h/L and Cmin = 15 and 20 mg/L. We then simulated data for the next day, adopting the computed doses, and repeated the above procedure for 7 days. Thereafter, we calculated the percentage error and the normalized root mean square error (NRMSE) of estimated against "true" PK parameters, and the percentage of optimal treatment (POT), defined as the percentage of patients who met 400 ≤ AUC24 ≤ 600 mg·h/L and Cmin ≤ 20 mg/L. RESULTS: PK parameters were unbiasedly estimated in all investigated scenarios and the 6-day average NRMSE were 32.5%/38.5% (CL/V, where CL is clearance and V is volume of distribution) in the trough sampling scheme and 27.3%/26.5% (CL/V) in the rich sampling scheme. Regarding POT, the sampling scheme had marginal influence, while target exposure showed clear impacts that the maximum POT of 71.5% was reached when doses were computed based on AUC24 = 500 mg·h/L. CONCLUSIONS: For model-based TDM of vancomycin in ICU patients, sampling more frequently than taking only trough samples adds no value and dosing based on AUC24 = 500 mg·h/L lead to the best POT.


Assuntos
Monitoramento de Medicamentos , Vancomicina , Antibacterianos/uso terapêutico , Área Sob a Curva , Teorema de Bayes , Cuidados Críticos , Humanos
15.
J Crit Care ; 62: 124-130, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33352505

RESUMO

PURPOSE: Potential drug-drug interactions (pDDIs) may harm patients admitted to the Intensive Care Unit (ICU). Due to the patient's critical condition and continuous monitoring on the ICU, not all pDDIs are clinically relevant. Clinical decision support systems (CDSSs) warning for irrelevant pDDIs could result in alert fatigue and overlooking important signals. Therefore, our aim was to describe the frequency of clinically relevant pDDIs (crpDDIs) to enable tailoring of CDSSs to the ICU setting. MATERIALS & METHODS: In this multicenter retrospective observational study, we used medication administration data to identify pDDIs in ICU admissions from 13 ICUs. Clinical relevance was based on a Delphi study in which intensivists and hospital pharmacists assessed the clinical relevance of pDDIs for the ICU setting. RESULTS: The mean number of pDDIs per 1000 medication administrations was 70.1, dropping to 31.0 when considering only crpDDIs. Of 103,871 ICU patients, 38% was exposed to a crpDDI. The most frequently occurring crpDDIs involve QT-prolonging agents, digoxin, or NSAIDs. CONCLUSIONS: Considering clinical relevance of pDDIs in the ICU setting is important, as only half of the detected pDDIs were crpDDIs. Therefore, tailoring CDSSs to the ICU may reduce alert fatigue and improve medication safety in ICU patients.


Assuntos
Cuidados Críticos , Preparações Farmacêuticas , Interações Medicamentosas , Humanos , Unidades de Terapia Intensiva , Estudos Retrospectivos
16.
Int J Nurs Stud ; 113: 103780, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157431

RESUMO

BACKGROUND: Several instruments have been developed to measure nursing workload. The commonly used Nursing Activities Score (NAS) and Therapeutic Intervention Scoring System (TISS) are applied to all types of ICU patients. Former research showed that NAS explained 59 to 81% of actual nursing time, whereas the Therapeutic Intervention Scoring System (TISS) described only 43% of the actual nursing time. In both models the development was not based on time measurements. OBJECTIVES: The aim of this study was to develop a time-based model which can assess patient related nursing workload more accurately and to evaluate whether patient characteristics influence nursing time and therefore should be included in the model. DESIGN: Observational study design. SETTING: All 82 Dutch ICUs participate in the National Intensive Care Evaluation (NICE) quality registry. Fifteen of these ICUs are participating in the newly implemented voluntary nursing capacity module. Seven of these ICUs voluntarily participated in this study. PARTICIPANTS: The patient(s) that were under the responsibility of a chosen nurse were followed by the observer during the entire shift. METHODS: Time spent per nursing activity per patient was measured in different shifts in seven Dutch ICUs. Nursing activities were measured using an in-house developed web application. Three different models of varying complexity (1. nursing activities only; 2. nursing activities and case-mix correction; 3. complex model with case-mix correction per nursing activity) were developed to explain the total amount of nursing time per patient. The performance of the three models was assessed in 1000 bootstrap samples using the squared Pearson correlation coefficient (R2), Root Mean Squared Prediction Error (RMSPE), Mean Absolute Prediction Error (MAPE), and prediction bias. RESULTS: In total 287 unique patients have been observed in 371 shifts. Model one's Pearson's R was 0.89 (95%CI 0.86-0.92), model two with case-mix correction 0.90 (95%CI 0.88-0.93), and the third complex model 0.64 (95%CI 0.56-0.72) compared with the actual patient related nursing workload. CONCLUSION: The newly developed Nurse Operation Workload (NOW) model outperforms existing models in measuring nursing workload, while it includes a lower number of activities and therewith lowers the registration burden. Case-mix correction does not further improve the performance of this model. The patient related nursing workload measured by the NOW gives insight in the actual nursing time needed by patients and can therefore be used to evaluate the average workload per patient per nurse.


Assuntos
Recursos Humanos de Enfermagem Hospitalar , Carga de Trabalho , Cuidados Críticos , Humanos , Unidades de Terapia Intensiva , Modelos de Enfermagem
17.
Pharm Res ; 37(9): 171, 2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32830297

RESUMO

PURPOSE: Bayesian forecasting is crucial for model-based dose optimization based on therapeutic drug monitoring (TDM) data of vancomycin in intensive care (ICU) patients. We aimed to evaluate the performance of Bayesian forecasting using maximum a posteriori (MAP) estimation for model-based TDM. METHODS: We used a vancomycin TDM data set (n = 408 patients). We compared standard MAP-based Bayesian forecasting with two alternative approaches: (i) adaptive MAP which handles data over multiple iterations, and (ii) weighted MAP which weights the likelihood contribution of data. We evaluated the percentage error (PE) for seven scenarios including historical TDM data from the preceding day up to seven days. RESULTS: The mean of median PEs of all scenarios for the standard MAP, adaptive MAP and weighted MAP method were - 7.7%, -4.5% and - 6.7%. The adaptive MAP also showed the narrowest inter-quartile range of PE. In addition, regardless of MAP method, including historical TDM data further in the past will increase prediction errors. CONCLUSIONS: The proposed adaptive MAP method outperforms standard MAP in predictive performance and may be considered for improvement of model-based dose optimization. The inclusion of historical data beyond either one day (standard MAP and weighted MAP) or two days (adaptive MAP) reduces predictive performance.


Assuntos
Antibacterianos/farmacocinética , Teorema de Bayes , Monitoramento de Medicamentos/métodos , Vancomicina/farmacocinética , Adulto , Idoso , Idoso de 80 Anos ou mais , Cuidados Críticos , Feminino , Previsões , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Farmacocinética , Valor Preditivo dos Testes
18.
Front Pharmacol ; 11: 646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499697

RESUMO

INTRODUCTION: Antibiotic dosing in critically ill patients is challenging because their pharmacokinetics (PK) are altered and may change rapidly with disease progression. Standard dosing frequently leads to inadequate PK exposure. Therapeutic drug monitoring (TDM) offers a potential solution but requires sampling and PK knowledge, which delays decision support. It is our philosophy that antibiotic dosing support should be directly available at the bedside through deep integration into the electronic health record (EHR) system. Therefore we developed AutoKinetics, a clinical decision support system (CDSS) for real time, model informed precision antibiotic dosing. OBJECTIVE: To provide a detailed description of the design, development, validation, testing, and implementation of AutoKinetics. METHODS: We created a development framework and used workflow analysis to facilitate integration into popular EHR systems. We used a development cycle to iteratively adjust and expand AutoKinetics functionalities. Furthermore, we performed a literature review to select and integrate pharmacokinetic models for five frequently prescribed antibiotics for sepsis. Finally, we tackled regulatory challenges, in particular those related to the Medical Device Regulation under the European regulatory framework. RESULTS: We developed a SQL-based relational database as the backend of AutoKinetics. We developed a data loader to retrieve data in real time. We designed a clinical dosing algorithm to find a dose regimen to maintain antibiotic pharmacokinetic exposure within clinically relevant safety constraints. If needed, a loading dose is calculated to minimize the time until steady state is achieved. Finally, adaptive dosing using Bayesian estimation is applied if plasma levels are available. We implemented support for five extensively used antibiotics following model development, calibration, and validation. We integrated AutoKinetics into two popular EHRs (Metavision, Epic) and developed a user interface that provides textual and visual feedback to the physician. CONCLUSION: We successfully developed a CDSS for real time model informed precision antibiotic dosing at the bedside of the critically ill. This holds great promise for improving sepsis outcome. Therefore, we recently started the Right Dose Right Now multi-center randomized control trial to validate this concept in 420 patients with severe sepsis and septic shock.

20.
Trials ; 20(1): 745, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852491

RESUMO

BACKGROUND: Antibiotic exposure is often inadequate in critically ill patients with severe sepsis or septic shock and this is associated with worse outcomes. Despite markedly altered and rapidly changing pharmacokinetics in these patients, guidelines and clinicians continue to rely on standard dosing schemes. To address this challenge, we developed AutoKinetics, a clinical decision support system for antibiotic dosing. By feeding large amounts of electronic health record patient data into pharmacokinetic models, patient-specific predicted future plasma concentrations are displayed graphically. In addition, a tailored dosing advice is provided at the bedside in real time. To evaluate the effect of AutoKinetics on pharmacometric and clinical endpoints, we are conducting the Right Dose Right Now multicenter, randomized controlled, two-arm, parallel-group, non-blinded, superiority trial. METHODS: All adult intensive care patients with a suspected or proven infection and having either lactatemia or receiving vasopressor support are eligible for inclusion. Randomization to the AutoKinetics or control group is initiated at the bedside when prescribing at least one of four commonly administered antibiotics: ceftriaxone, ciprofloxacin, meropenem and vancomycin. Dosing advice is available for patients in the AutoKinetics group, whereas patients in the control group receive standard dosing. The primary outcome of the study is pharmacometric target attainment during the first 24 h. Power analysis revealed the need for inclusion of 42 patients per group per antibiotic. Thus, a total of 336 patients will be included, 168 in each group. Secondary pharmacometric endpoints include time to target attainment and fraction of target attainment during an entire antibiotic course. Secondary clinical endpoints include mortality, clinical cure and days free from organ support. Several other exploratory and subgroup analyses are planned. DISCUSSION: This is the first randomized controlled trial to assess the effectiveness and safety of bedside data-driven automated antibiotic dosing advice. This is important as adequate antibiotic exposure may be crucial to treat severe sepsis and septic shock. In addition, the trial could prove to be a significant contribution to clinical pharmacometrics and serve as a stepping stone for the use of big data and artificial intelligence in the field. TRIAL REGISTRATION: Netherlands Trial Register (NTR), NL6501/NTR6689. Registered on 25 August 2017. European Clinical Trials Database (EudraCT), 2017-002478-37. Registered on 6 November 2017.


Assuntos
Antibacterianos/administração & dosagem , Inteligência Artificial , Monitoramento de Medicamentos/métodos , Projetos de Pesquisa , Choque Séptico/tratamento farmacológico , Adulto , Antibacterianos/farmacocinética , Big Data , Relação Dose-Resposta a Droga , Estudos de Equivalência como Asunto , Feminino , Humanos , Unidades de Terapia Intensiva , Estimativa de Kaplan-Meier , Masculino , Estudos Multicêntricos como Assunto , Países Baixos/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Índice de Gravidade de Doença , Choque Séptico/diagnóstico , Choque Séptico/mortalidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA