Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Pharm ; 660: 124322, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866082

RESUMO

Podocytes, cells of the glomerular filtration barrier, play a crucial role in kidney diseases and are gaining attention as potential targets for new therapies. Brain-Derived Neurotrophic Factor (BDNF) has shown promising results in repairing podocyte damage, but its efficacy via parenteral administration is limited by a short half-life. Low temperature sensitive liposomes (LTSL) are a promising tool for targeted BDNF delivery, preserving its activity after encapsulation. This study aimed to improve LTSL design for efficient BDNF encapsulation and targeted release to podocytes, while maintaining stability and biological activity, and exploiting the conjugation of targeting peptides. While cyclic RGD (cRGD) was used for targeting endothelial cells in vitro, a homing peptide (HITSLLS) was conjugated for more specific uptake by glomerular endothelial cells in vivo. BDNF-loaded LTSL successfully repaired cytoskeleton damage in podocytes and reduced albumin permeability in a glomerular co-culture model. cRGD conjugation enhanced endothelial cell targeting and uptake, highlighting an improved therapeutic effect when BDNF release was induced by thermoresponsive liposomal degradation. In vivo, targeted LTSL showed evidence of accumulation in the kidneys, and their BDNF delivery decreased proteinuria and ameliorated kidney histology. These findings highlight the potential of BDNF-LTSL formulations in restoring podocyte function and treating glomerular diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Sistemas de Liberação de Medicamentos , Lipossomos , Podócitos , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Camundongos , Masculino , Temperatura Baixa , Técnicas de Cocultura , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/química , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos Endogâmicos C57BL , Liberação Controlada de Fármacos
2.
NPJ Regen Med ; 8(1): 8, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774354

RESUMO

Nonhealing wounds place a significant burden on both quality of life of affected patients and health systems. Skin substitutes are applied to promote the closure of nonhealing wounds, although their efficacy is limited by inadequate vascularization. The stromal vascular fraction (SVF) from the adipose tissue is a promising therapy to overcome this limitation. Despite a few successful clinical trials, its incorporation in the clinical routine has been hampered by their inconsistent results. All these studies concluded by warranting pre-clinical work aimed at both characterizing the cell types composing the SVF and shedding light on their mechanism of action. Here, we established a model of nonhealing wound, in which we applied the SVF in combination with a clinical-grade skin substitute. We purified the SVF cells from transgenic animals to trace their fate after transplantation and observed that it gave rise to a mature vascular network composed of arteries, capillaries, veins, as well as lymphatics, structurally and functionally connected with the host circulation. Then we moved to a human-in-mouse model and confirmed that SVF-derived endothelial cells formed hybrid human-mouse vessels, that were stabilized by perivascular cells. Mechanistically, SVF-derived endothelial cells engrafted and expanded, directly contributing to the formation of new vessels, while a population of fibro-adipogenic progenitors stimulated the expansion of the host vasculature in a paracrine manner. These data have important clinical implications, as they provide a steppingstone toward the reproducible and effective adoption of the SVF as a standard care for nonhealing wounds.

3.
Biomed Pharmacother ; 131: 110752, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152918

RESUMO

Gastroesophageal reflux disease (GERD) is a common digestive disorder that causes esophagitis and injuries to the esophageal mucosa. GERD symptoms are recurrent during pregnancy and their treatment is focused on lifestyle changes and nonprescription medicines. The aim of this study was to characterize the mechanism of action of a new patented medical device, an oral formulation containing hyaluronic acid, rice extract, and amino acids dispersed in a bioadhesive polymer matrix, by assessing its protective effects in in vitro and ex vivo models of esophageal mucosa damage. Acidic bile salts and pepsin cocktail (BSC) added to CP-A and COLO-680 N esophagus cells were used as an in vitro GERD model to evaluate the binding capacities, anti-inflammatory effects and reparative properties of the investigational product (IP) in comparison to a viscous control. Our results showed that the IP prevents cell permeability and tight junction dysfunction induced by BSC. Furthermore, the IP was also able to down-regulate IL-6 and IL-8 mRNA expression induced by BSC stimulation and to promote tissue repair and wound healing. The results were confirmed by ex vivo experiments in excised rat esophagi through the quantification of Evans Blue permeability assay. These experiments provided evidence that the IP is able to bind to the human esophagus cells, preventing the damage caused by gastroesophageal reflux, showing potential anti-irritative, soothing, and reparative properties.


Assuntos
Aminoácidos/administração & dosagem , Mucosa Esofágica/efeitos dos fármacos , Refluxo Gastroesofágico/tratamento farmacológico , Ácido Hialurônico/administração & dosagem , Oryza , Extratos Vegetais/administração & dosagem , Regeneração/efeitos dos fármacos , Adesividade , Aminoácidos/química , Linhagem Celular Tumoral , Equipamentos e Provisões , Mucosa Esofágica/fisiologia , Humanos , Ácido Hialurônico/química , Permeabilidade , Extratos Vegetais/química , Regeneração/fisiologia
4.
Nat Commun ; 11(1): 3945, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770028

RESUMO

TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading to enhanced vesicular trafficking and secretion. The mut-p53/HIF1α/miR-30d axis potentiates the release of soluble factors and the deposition and remodeling of the ECM, affecting mechano-signaling and stromal cells activation within the tumor microenvironment, thereby enhancing tumor growth and metastatic colonization.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Complexo de Golgi/patologia , Síndrome de Li-Fraumeni/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Biópsia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Feminino , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Complexo de Golgi/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Síndrome de Li-Fraumeni/patologia , Camundongos , Microtúbulos/metabolismo , Microtúbulos/patologia , Mutação , Cultura Primária de Células , Vesículas Secretórias/metabolismo , Vesículas Secretórias/patologia , Transdução de Sinais/genética , Pele/citologia , Pele/patologia , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Immunol ; 205(5): 1385-1392, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32759297

RESUMO

ß2-Glycoprotein I (ß2-GPI) is an abundant plasma glycoprotein with unknown physiological function and is currently recognized as the main target of antiphospholipid Abs responsible for complement activation and vascular thrombosis in patients with antiphospholipid syndrome (APS). In this study, we provide evidence that mannose-binding lectin (MBL) binds to ß2-GPI in Ca++ and a dose-dependent manner and that this interaction activates complement and promotes complement-dependent thrombin generation. Surprisingly, a significant binding was observed between MBL and isolated domains II and IV of ß2-GPI, whereas the carbohydrate chains, domain I and domain V, were not involved in the interaction, documenting a noncanonical binding mode between MBL and ß2-GPI. Importantly, this interaction may occur on endothelial cells because binding of MBL to ß2-GPI was detected on the surface of HUVECs, and colocalization of MBL with ß2-GPI was observed on the endothelium of a biopsy specimen of a femoral artery from an APS patient. Because ß2-GPI-mediated MBL-dependent thrombin generation was increased after priming the endothelium with TNF-α, our data suggests that this mechanism could play an important yet unrecognized role under physiological conditions and may be upregulated in pathological situations. Moreover, the complement activation and the procoagulant effects of the ß2-GPI/MBL complex may contribute to amplify similar activities of anti-ß2-GPI Abs in APS and possibly act independently of Abs, raising the issue of developing appropriate therapies to avoid recurrences and disability in patients at risk for these clinical conditions.


Assuntos
Ativação do Complemento/imunologia , Lectina de Ligação a Manose/metabolismo , Trombina/metabolismo , beta 2-Glicoproteína I/metabolismo , Síndrome Antifosfolipídica/imunologia , Síndrome Antifosfolipídica/metabolismo , Cálcio/metabolismo , Linhagem Celular , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Endotélio/imunologia , Endotélio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Lectina de Ligação a Manose/imunologia , Ligação Proteica/imunologia , Trombina/imunologia , Trombose/imunologia , Trombose/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , beta 2-Glicoproteína I/imunologia
6.
Front Immunol ; 10: 2387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681281

RESUMO

The female reproductive tract harbors distinct microbial communities, as in the vagina, cervical canal, uterus, and fallopian tubes. The nature of the vaginal microbiota is well-known; in contrast, the upper reproductive tract remains largely unexplored. Alteration in the uterine microbiota, which is dependent on the nutrients and hormones available to the uterus, is likely to play an important role in uterine-related diseases such as hysteromyoma, adenomyosis, and endometriosis. Uterine mucosa is an important tissue barrier whose main function is to offer protection against pathogens and other toxic factors, while maintaining a symbiotic relationship with commensal microbes. These characteristics are shared by all the mucosal tissues; however, the uterine mucosa is unique since it changes cyclically during the menstrual cycle as well as pregnancy. The immune system, besides its role in the defense process, plays crucial roles in reproduction as it ensures local immune tolerance to fetal/paternal antigens, trophoblast invasion, and vascular remodeling. The human endometrium contains a conspicuous number of immune cells, mainly Natural Killers (NK) cells, which are phenotypically distinct from peripheral cytotoxic NK, cells and macrophages. The endometrium also contains few lymphoid aggregates comprising B cell and CD8+ T cells. The number and the phenotype of these cells change during the menstrual cycle. It has become evident in recent years that the immune cell phenotype and function can be influenced by microbiota. Immune cells can sense the presence of microbes through their pattern recognition receptors, setting up host-microbe interaction. The microbiota exerts an appropriately controlled defense mechanism by competing for nutrients and mucosal space with pathogens. It has recently been considered that uterus is a non-sterile compartment since it seems to possess its own microbiota. There has been an increasing interest in characterizing the nature of microbial colonization within the uterus and its apparent impact on fertility and pregnancy. This review will examine the potential relationship between the uterine microbiota and the immune cells present in the local environment.


Assuntos
Imunidade , Microbiota , Útero/imunologia , Útero/microbiologia , Imunidade Adaptativa , Endométrio/imunologia , Endométrio/metabolismo , Endométrio/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Leucócitos/imunologia , Leucócitos/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Muco , Gravidez , Sêmen , Útero/anatomia & histologia
7.
J Vis Exp ; (148)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31259907

RESUMO

It has been increasingly demonstrated that the tumor microenvironment plays an active role in neoplasia growth and metastasis. Through different pathways, tumor cells can efficiently recruit stromal, immune and endothelial cells by secreting stimulatory factors, chemokines and cytokines. In turn, these cells can alter the signaling properties of the microenvironment by releasing growth-promoting signals, metabolites and extracellular matrix components to sustain high proliferation and metastatic competence. In this context, we identify that the complement component C1q, highly expressed locally by a range of human malignant tumors, upon interacting with the extracellular matrix hyaluronic acid, strongly affects the behavior of primary cells isolated from human tumor specimens. Here, we describe a method to test how C1q bound to hyaluronic acid (HA) impacts tumor cell adhesion, underlying the fact that the biological properties of key components of the extracellular matrix (in this case HA) can be shaped by bioactive signals toward tumor progression.


Assuntos
Adesão Celular/genética , Complemento C1q/metabolismo , Ácido Hialurônico/metabolismo , Microambiente Tumoral/genética , Humanos
8.
J Exp Clin Cancer Res ; 38(1): 313, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311575

RESUMO

BACKGROUND: Breast cancer is the most common malignancy in women worldwide. Among the breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive and the most difficult to treat. One of the master regulators in TNBC progression is the architectural transcription factor HMGA1. This study aimed to further explore the HMGA1 molecular network to identify molecular mechanisms involved in TNBC progression. METHODS: RNA from the MDA-MB-231 cell line, silenced for HMGA1 expression, was sequenced and, with a bioinformatic analysis, molecular partners HMGA1 could cooperate with in regulating common downstream gene networks were identified. Among the putative partners, the FOXM1 transcription factor was selected. The relationship occurring between HMGA1 and FOXM1 was explored by qRT-PCR, co-immunoprecipitation and protein stability assays. Subsequently, the transcriptional activity of HMGA1 and FOXM1 was analysed by luciferase assay on the VEGFA promoter. The impact on angiogenesis was assessed in vitro, evaluating the tube formation ability of endothelial cells exposed to the conditioned medium of MDA-MB-231 cells silenced for HMGA1 and FOXM1 and in vivo injecting MDA-MB-231 cells, silenced for the two factors, in zebrafish larvae. RESULTS: Here, we discover FOXM1 as a novel molecular partner of HMGA1 in regulating a gene network implicated in several breast cancer hallmarks. HMGA1 forms a complex with FOXM1 and stabilizes it in the nucleus, increasing its transcriptional activity on common target genes, among them, VEGFA, the main inducer of angiogenesis. Furthermore, we demonstrate that HMGA1 and FOXM1 synergistically drive breast cancer cells to promote tumor angiogenesis both in vitro in endothelial cells and in vivo in a zebrafish xenograft model. Moreover, using a dataset of breast cancer patients we show that the co-expression of HMGA1, FOXM1 and VEGFA is a negative prognostic factor of distant metastasis-free survival and relapse-free survival. CONCLUSIONS: This study reveals FOXM1 as a crucial interactor of HMGA1 and proves that their cooperative action supports breast cancer aggressiveness, by promoting tumor angiogenesis. Therefore, the possibility to target HMGA1/FOXM1 in combination should represent an attractive therapeutic option to counteract breast cancer angiogenesis.


Assuntos
Núcleo Celular/metabolismo , Proteína Forkhead Box M1/metabolismo , Proteína HMGA1a/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Proteína Forkhead Box M1/química , Proteína Forkhead Box M1/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células HEK293 , Proteína HMGA1a/genética , Humanos , Prognóstico , Regiões Promotoras Genéticas , Estabilidade Proteica , Análise de Sequência de RNA , Análise de Sobrevida , Transcrição Gênica , Neoplasias de Mama Triplo Negativas/metabolismo , Peixe-Zebra
9.
Int J Mol Sci ; 20(7)2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30935090

RESUMO

BACKGROUND: In pregnancy, excessive inflammation and break down of immunologic tolerance can contribute to miscarriage. Endothelial cells (ECs) are able to orchestrate the inflammatory processes by secreting pro-inflammatory mediators and bactericidal factors by modulating leakiness and leukocyte trafficking, via the expression of adhesion molecules and chemokines. The aim of this study was to analyse the differences in the phenotype between microvascular ECs isolated from decidua (DECs) and ECs isolated from human skin (ADMECs). METHODS: DECs and ADMECs were characterized for their basal expression of angiogenic factors and adhesion molecules. A range of immunological responses was evaluated, such as vessel leakage, reactive oxygen species (ROS) production in response to TNF-α stimulation, adhesion molecules expression and leukocyte migration in response to TNF-α and IFN-γ stimulation. RESULTS: DECs produced higher levels of HGF, VEGF-A and IGFBP3 compared to ADMECs. DECs expressed adhesion molecules, ICAM-2 and ICAM-3, and a mild response to TNF-α was observed. Finally, DECs produced high levels of CXCL9/MIG and CXCL10/IP-10 in response to IFN-γ and selectively recruited Treg lymphocytes. CONCLUSION: DEC phenotype differs considerably from that of ADMECs, suggesting that DECs may play an active role in the control of immune response and angiogenesis at the foetal-maternal interface.


Assuntos
Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Pele/imunologia , Pele/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Decídua , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Imunofluorescência , Humanos , Técnicas In Vitro , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Molécula 3 de Adesão Intercelular/genética , Molécula 3 de Adesão Intercelular/metabolismo , Interferon gama/farmacologia , Neovascularização Patológica/metabolismo , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
10.
J Allergy Clin Immunol ; 142(3): 883-891, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29729940

RESUMO

BACKGROUND: Hereditary angioedema (HAE) caused by C1-inhibitor deficiency is a lifelong illness characterized by recurrent acute attacks of localized skin or mucosal edema. Activation of the kallikrein/bradykinin pathway at the endothelial cell level has a relevant pathogenetic role in acute HAE attacks. Moreover, other pathways are involved given the variable clinical expression of the disease in different patients. OBJECTIVE: We sought to explore the involvement of other putative genes in edema formation. METHODS: We performed a PBMC microarray gene expression analysis on RNA isolated from patients with HAE during an acute attack and compared them with the transcriptomic profile of the same patients in the remission phase. RESULTS: Gene expression analysis identified 23 genes significantly modulated during acute attacks that are involved primarily in the natural killer cell signaling and leukocyte extravasation signaling pathways. Gene set enrichment analysis showed a significant activation of relevant biological processes, such as response to external stimuli and protein processing (q < 0.05), suggesting involvement of PBMCs during acute HAE attacks. Upregulation of 2 genes, those encoding adrenomedullin and cellular receptor for urokinase plasminogen activator (uPAR), which occurs during an acute attack, was confirmed in PBMCs of 20 additional patients with HAE by using real-time PCR. Finally, in vitro studies demonstrated the involvement of uPAR in the generation of bradykinin and endothelial leakage. CONCLUSIONS: Our study demonstrates the increase in levels of adrenomedullin and uPAR in PBMCs during an acute HAE attack. Activation of these genes usually involved in regulation of vascular tone and in inflammatory response might have a pathogenic role by amplifying bradykinin production and edema formation in patients with HAE.


Assuntos
Adrenomedulina/genética , Angioedemas Hereditários/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Doença Aguda , Adolescente , Adulto , Idoso , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Células Jurkat , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Transcriptoma
12.
Am J Reprod Immunol ; 79(4): e12823, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427369

RESUMO

PROBLEM: Procalcitonin (PCT) is the prohormone of calcitonin which is usually released from neuroendocrine cells of the thyroid gland (parafollicular) and the lungs (K cells). PCT is synthesized by almost all cell types and tissues, including monocytes and parenchymal tissue, upon LPS stimulation. To date, there is no evidence for PCT expression in the placenta both in physiological and pathological conditions. METHOD: Circulating and placental PCT levels were analysed in pre-eclamptic (PE) and control patients. Placental cells and macrophages (PBDM), stimulated with PE sera, were analysed for PCT expression. The effect of anti-TNF-α antibody was analysed. RESULTS: Higher PCT levels were detected in PE sera and in PE placentae compared to healthy women. PE trophoblasts showed increased PCT expression compared to those isolated from healthy placentae. PE sera induced an upregulation of PCT production in macrophages and placental cells. The treatment of PBDM with PE sera in the presence of anti-TNF-α completely abrogated the effect induced by pathologic sera. CONCLUSION: Trophoblast cells are the main producer of PCT in PE placentae. TNF-α, in association with other circulating factors present in PE sera, upregulates PCT production in macrophages and normal placental cells, thus contributing to the observed increased in circulating PCT in PE sera.


Assuntos
Calcitonina/metabolismo , Macrófagos/imunologia , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Trofoblastos/metabolismo , Adulto , Estudos de Coortes , Feminino , Humanos , Placenta/patologia , Trofoblastos/patologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Adulto Jovem
13.
Clin Sci (Lond) ; 132(1): 69-83, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29167318

RESUMO

Recent studies suggest that a circulating protein called TRAIL (TNF-related apoptosis inducing ligand) may have an important role in the treatment of type 2 diabetes. It has been shown that TRAIL deficiency worsens diabetes and that TRAIL delivery, when it is given before disease onset, slows down its development. The present study aimed at evaluating whether TRAIL had the potential not only to prevent, but also to treat type 2 diabetes. Thirty male C57BL/6J mice were randomized to a standard or a high-fat diet (HFD). After 4 weeks of HFD, mice were further randomized to receive either placebo or TRAIL, which was delivered weekly for 8 weeks. Body weight, food intake, fasting glucose, and insulin were measured at baseline and every 4 weeks. Tolerance tests were performed before drug randomization and at the end of the study. Tissues were collected for further analyses. Parallel in vitro studies were conducted on HepG2 cells and mouse primary hepatocytes. TRAIL significantly reduced body weight, adipocyte hypertrophy, free fatty acid levels, and inflammation. Moreover, it significantly improved impaired glucose tolerance, and ameliorated non-alcoholic fatty liver disease (NAFLD). TRAIL treatment reduced liver fat content by 47% in vivo as well as by 45% in HepG2 cells and by 39% in primary hepatocytes. This was associated with a significant increase in liver peroxisome proliferator-activated receptor (PPAR) γ (PPARγ) co-activator-1 α (PGC-1α) expression both in vivo and in vitro, pointing to a direct protective effect of TRAIL on the liver. The present study confirms the ability of TRAIL to significantly attenuate diet-induced metabolic abnormalities, and it shows for the first time that TRAIL is effective also when administered after disease onset. In addition, our data shed light on TRAIL therapeutic potential not only against impaired glucose tolerance, but also against NAFLD.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , PPAR gama/genética , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Distribuição Aleatória , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/farmacocinética
14.
BMC Nephrol ; 18(1): 219, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28683789

RESUMO

BACKGROUND: Osteoprotegerin (OPG) is a glycoprotein that plays an important regulatory role in the skeletal, vascular, and immune system. It has been shown that OPG predicts chronic kidney disease (CKD) in diabetic patients. We hypothesized that OPG could be a risk marker of CKD development also in non-diabetic hypertensive patients. METHODS: A case-control study was carried out to measure circulating OPG levels in 42 hypertensive patients with CKD and in 141 hypertensive patients without CKD. A potential relationship between OPG and the presence of CKD was investigated and a receiver-operating characteristic (ROC) curve was designed thereafter to identify a cut-off value of OPG that best explained the presence of CKD. Secondly, to evaluate whether OPG increase could affect the kidney, 18 C57BL/6J mice were randomized to be treated with saline or recombinant OPG every 3 weeks for 12 weeks. RESULTS: Circulating OPG levels were significantly higher in hypertensive patients with CKD, and there was a significant inverse association between OPG and renal function, that was independent from other variables. ROC analysis showed that OPG levels had a high statistically predictive value on CKD in hypertensive patients, which was greater than that of hypertension. The OPG best cut-off value associated with CKD was 1109.19 ng/L. In the experimental study, OPG delivery significantly increased the gene expression of pro-inflammatory and pro-fibrotic mediators, as well as the glomerular nitrosylation of proteins. CONCLUSIONS: This study shows that OPG is associated with CKD in hypertensive patients, where it might have a higher predictive value than that of hypertension for CKD development. Secondly, we found that OPG delivery significantly increased the expression of molecular pathways involved in kidney damage. Further longitudinal studies are needed not only to evaluate whether OPG predicts CKD development but also to clarify whether OPG should be considered a risk factor for CKD.


Assuntos
Hipertensão/sangue , Hipertensão/diagnóstico , Osteoprotegerina/sangue , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico , Idoso , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Hipertensão/epidemiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Distribuição Aleatória , Insuficiência Renal Crônica/epidemiologia
15.
Clin Biochem ; 50(16-17): 972-976, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28551332

RESUMO

INTRODUCTION: Recent studies suggest that a circulating protein called TRAIL (TNF-related apoptosis-inducing ligand) might have a role in the regulation of body weight and metabolism. Interestingly, thyroid hormones seem to increase TRAIL tissue expression. This study aimed at evaluating whether overt thyroid disorders affected circulating TRAIL levels. METHODS: TRAIL circulating levels were measured in euthyroid, hyperthyroid, and hypothyroid patients before and after thyroid function normalization. Univariate and multivariate analyses were performed to evaluate the correlation between thyroid hormones and TRAIL. Then, the stimulatory effect of both triiodothyronine (T3) and thyroxine (T4) on TRAIL was evaluated in vitro on peripheral blood mononuclear cells. RESULTS: Circulating levels of TRAIL significantly increased in hyperthyroid and decreased in hypothyroid patients as compared to controls. Once thyroid function was restored, TRAIL levels normalized. There was an independent association between TRAIL and both fT3 and fT4. Consistent with these findings, T3 and T4 stimulated TRAIL release in vitro. CONCLUSION: Here we show that thyroid hormones are associated with TRAIL expression in vivo and stimulate TRAIL expression in vitro. Given the overlap between the metabolic effects of thyroid hormones and TRAIL, this work sheds light on the possibility that TRAIL might be one of the molecules mediating thyroid hormones peripheral effects.


Assuntos
Regulação da Expressão Gênica , Hipertireoidismo/metabolismo , Hipotireoidismo/metabolismo , Leucócitos Mononucleares/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Idoso , Feminino , Humanos , Hipertireoidismo/fisiopatologia , Hipotireoidismo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Tiroxina/sangue , Tri-Iodotironina/sangue
16.
Biomed Res Int ; 2016: 1752854, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200369

RESUMO

Cardiovascular diseases (CVD) remain the major cause of death and premature disability in Western societies. Assessing the risk of CVD is an important aspect in clinical decision-making. Among the growing number of molecules that are studied for their potential utility as CVD biomarkers, a lot of attention has been focused on osteoprotegerin (OPG) and its ligands, which are receptor activator of nuclear factor κB ligand (RANKL) and TNF-related apoptosis-inducing ligand. Based on the existing literature and on our experience in this field, here we review what the possible roles of OPG and TRAIL in CVD are and their potential utility as CVD biomarkers.


Assuntos
Biomarcadores/metabolismo , Doenças Cardiovasculares/metabolismo , Osteoprotegerina/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Humanos , Ligante RANK/metabolismo , Risco
17.
Int Arch Allergy Immunol ; 169(2): 130-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073906

RESUMO

BACKGROUND: Immunoglobulin (Ig) A deficiency is a primary immunodeficiency in which autoimmunity is frequently observed. Thirty to fifty percent of patients with spontaneous chronic urticaria have autoantibodies that are able to cross-link FcεRI on mast cells and basophils. METHODS: We investigated whether spontaneous chronic urticaria in patients with IgA deficiency meets the criteria for autoimmunity. Four patients were screened for positivity to a skin prick test and an autologous serum skin test and for the presence of other autoimmune diseases. Patient sera were tested for the ability to activate basophils and mast cells in vitro by measuring surface CD63 expression and ß-hexosaminidase release, respectively. RESULTS: The autologous serum test was positive in all patients, and patient sera were found to induce CD63 upregulation on basophils and degranulation of an LAD2 mast cell line. Moreover, all patients were affected by other autoimmune disorders. CONCLUSION: For the first time, these data point out chronic autoimmune urticaria in subjects with an IgA deficiency and confirm that different autoimmune disorders are common among patients with an IgA deficiency. Patients with chronic autoimmune spontaneous urticaria should be screened for IgA deficiency, especially if they are affected by other autoimmune disorders. Thus, spontaneous urticaria could mirror more complex systemic diseases, such as immune deficiency.


Assuntos
Autoanticorpos/imunologia , Doenças Autoimunes/complicações , Doenças Autoimunes/imunologia , Deficiência de IgA/complicações , Deficiência de IgA/imunologia , Urticária/complicações , Urticária/imunologia , Adolescente , Adulto , Doenças Autoimunes/metabolismo , Basófilos/imunologia , Basófilos/metabolismo , Degranulação Celular/imunologia , Feminino , Humanos , Deficiência de IgA/metabolismo , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Pessoa de Meia-Idade , Receptores de IgE/metabolismo , Urticária/metabolismo , Adulto Jovem
18.
Sci Rep ; 6: 18785, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728351

RESUMO

Over 10 million people every year become infected by Treponema pallidum and develop syphilis, a disease with broad symptomatology that, due to the difficulty to eradicate the pathogen from the highly vascularized secondary sites of infection, is still treated with injections of penicillin. Unlike most other bacterial pathogens, T. pallidum infection produces indeed a strong angiogenic response whose mechanism of activation, however, remains unknown. Here, we report that one of the major antigen of T. pallidum, the TpF1 protein, has growth factor-like activity on primary cultures of human endothelial cells and activates specific T cells able to promote tissue factor production. The growth factor-like activity is mediated by the secretion of IL-8 but not of VEGF, two known angiogenic factors. The pathogen's factor signals IL-8 secretion through the activation of the CREB/NF-κB signalling pathway. These findings are recapitulated in an animal model, zebrafish, where we observed that TpF1 injection stimulates angiogenesis and IL-8, but not VEGF, secretion. This study suggests that the angiogenic response observed during secondary syphilis is triggered by TpF1 and that pharmacological therapies directed to inhibit IL-8 response in patients should be explored to treat this disease.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Helmintos/imunologia , Interleucina-8/metabolismo , Neovascularização Patológica , Transdução de Sinais , Treponema pallidum/imunologia , Animais , Antígenos de Helmintos/metabolismo , Movimento Celular , Proliferação de Células , Quimiocina CCL20/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-8/genética , Monócitos/imunologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Sífilis/genética , Sífilis/imunologia , Sífilis/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Peixe-Zebra
19.
Mediators Inflamm ; 2016: 6529728, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28070143

RESUMO

Background. Dyslipidemia and diabetes are two of the most well established risk factors for the development of cardiovascular disease (CVD). Both of them usually activate a complex range of pathogenic pathways leading to organ damage. Here we hypothesized that dyslipidemia and diabetes could affect osteoprotegerin (OPG) and TNF-related apoptosis-inducing ligand (TRAIL) expression in the vessels and the heart. Materials and Methods. Gene and protein expression of OPG, TRAIL, and OPG/TRAIL ratio were quantified in the aorta and the hearts of control mice, dyslipidemic mice, and diabetic mice. Results. Diabetes significantly increased OPG and the OPG/TRAIL ratio expression in the aorta, while dyslipidemia was the major determinant of the changes observed in the heart, where it significantly increased OPG and reduced TRAIL expression, thus increasing cardiac OPG/TRAIL ratio. Conclusions. This work shows that both dyslipidemia and diabetes affect OPG/TRAIL ratio in the cardiovascular system. This could contribute to the changes in circulating OPG/TRAIL which are observed in patients with diabetes and CVD. Most importantly, these changes could mediate/contribute to atherosclerosis development and cardiac remodeling.


Assuntos
Sistema Cardiovascular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dislipidemias/metabolismo , Osteoprotegerina/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Apoptose , Aterosclerose/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Atherosclerosis ; 244: 121-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26630181

RESUMO

OBJECTIVE: Recent studies have demonstrated that Ang1-7 has anti-inflammatory effects. Since the formation of Ang1-7 is significantly altered in the setting of diabetes, here we aimed to evaluate whether Ang1-7 infusion could ameliorate diabetes-induced leukocyte recruitment. METHODS: Wild-type male Wistar rats were randomly allocated to the following groups: control + saline, control + Ang1-7, diabetes + saline, diabetes + Ang1-7. Diabetes was induced by streptozotocin. Saline and Ang1-7 (576 µg/kg/day) were injected intraperitoneally daily. After 4 weeks leukocyte trafficking was studied in vivo by intravital microscopy in the mesenteric bed, where the expression of pro-oxidative, proinflammatory, and profibrotic molecules was also assessed. In parallel in vitro studies, HUVEC were grown in 5 mM, 22 mM, 30 mM, 40 mM, 50 mM, and 75 mM glucose media for 48 h, 72 h and 6 days and were treated either with placebo, or with Ang1-7, or with Ang1-7 and its inhibitor A779 in order to evaluate the expression of ICAM-1 and VCAM-1. We further studied leukocytes recruitment in vitro by evaluating PMN-HUVEC adhesion. RESULTS: Ang1-7 prevented in vivo diabetes-induced leukocyte adhesion and extravasation, and it significantly reduced vascular hypertrophy and the other molecular changes due to diabetes. Ang 1-7 prevented also in vitro the hyperglycemia-induced increase of ICAM-1 and VCAM-1 as well as the hyperglycemia-induced PMN adhesion. A779 inhibited Ang 1-7 effects. CONCLUSIONS: Ang1-7 significantly reduced diabetes-induced leukocyte recruitment both in vivo and in vitro. These findings emphasize the potential utility of ACE2/Ang1-7/Mas repletion as a strategy to reduce diabetes-induced atherosclerosis.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Endotélio Vascular/metabolismo , Leucócitos/metabolismo , Angiotensina I , Animais , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Imuno-Histoquímica , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Masculino , Fragmentos de Peptídeos , RNA/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA