RESUMO
The mechanisms behind the (13)C enrichment of organic matter with increasing soil depth in forests are unclear. To determine if (13)C discrimination during respiration could contribute to this pattern, we compared delta(13)C signatures of respired CO(2) from sieved mineral soil, litter layer and litterfall with measurements of delta(13)C and delta(15)N of mineral soil, litter layer, litterfall, roots and fungal mycelia sampled from a 68-year-old Norway spruce forest stand planted on previously cultivated land. Because the land was subjected to ploughing before establishment of the forest stand, shifts in delta(13)C in the top 20 cm reflect processes that have been active since the beginning of the reforestation process. As (13)C-depleted organic matter accumulated in the upper soil, a 1.0 per thousand delta(13)C gradient from -28.5 per thousand in the litter layer to -27.6 per thousand at a depth of 2-6 cm was formed. This can be explained by the 1 per thousand drop in delta(13)C of atmospheric CO(2) since the beginning of reforestation together with the mixing of new C (forest) and old C (farmland). However, the isotopic change of the atmospheric CO(2) explains only a portion of the additional 1.0 per thousand increase in delta(13)C below a depth of 20 cm. The delta(13)C of the respired CO(2) was similar to that of the organic matter in the upper soil layers but became increasingly (13)C enriched with depth, up to 2.5 per thousand relative to the organic matter. We hypothesise that this (13)C enrichment of the CO(2) as well as the residual increase in delta(13)C of the organic matter below a soil depth of 20 cm results from the increased contribution of (13)C-enriched microbially derived C with depth. Our results suggest that (13)C discrimination during microbial respiration does not contribute to the (13)C enrichment of organic matter in soils. We therefore recommend that these results should be taken into consideration when natural variations in delta(13)C of respired CO(2) are used to separate different components of soil respiration or ecosystem respiration.
Assuntos
Carbono/metabolismo , Solo , Biomassa , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Micélio , Picea , Raízes de Plantas , Microbiologia do SoloRESUMO
Soil respiration, a key component of the global carbon cycle, is a major source of uncertainty when estimating terrestrial carbon budgets at ecosystem and higher levels. Rates of soil and root respiration are assumed to be dependent on soil temperature and soil moisture yet these factors often barely explain half the seasonal variation in soil respiration. We here found that soil moisture (range 16.5-27.6% of dry weight) and soil temperature (range 8-17.5 degrees C) together explained 55% of the variance (cross-validated explained variance; Q2) in soil respiration rate (range 1.0-3.4 micromol C m(-2) s(-1)) in a Norway spruce (Picea abies) forest. We hypothesised that this was due to that the two components of soil respiration, root respiration and decomposition, are governed by different factors. We therefore applied PLS (partial least squares regression) multivariate modelling in which we, together with below ground temperature and soil moisture, used the recent above ground air temperature and air humidity (vapour pressure deficit, VPD) conditions as x-variables. We found that air temperature and VPD data collected 1-4 days before respiration measurements explained 86% of the seasonal variation in the rate of soil respiration. The addition of soil moisture and soil temperature to the PLS-models increased the Q2 to 93%. delta13C analysis of soil respiration supported the hypotheses that there was a fast flux of photosynthates to root respiration and a dependence on recent above ground weather conditions. Taken together, our results suggest that shoot activities the preceding 1-6 days influence, to a large degree, the rate of root and soil respiration. We propose this above ground influence on soil respiration to be proportionally largest in the middle of the growing season and in situations when there is large day-to-day shifts in the above ground weather conditions. During such conditions soil temperature may not exert the major control on root respiration.