Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 23(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565807

RESUMO

Equilibrative nucleoside transporters (ENTs) are polytopic membrane transporters responsible for the translocation of nucleosides, nucleobases-to a lesser extent-and nucleoside analog therapeutics across cellular membranes. ENTs function in a diffusion controlled bidirectional manner and are thought to utilize an alternating access transport mechanism. However, a detailed understanding of ENT function at the molecular level has remained elusive. ScENT1 (formerly known as Function Unknown Now 26 or FUN26) is the only known ENT ortholog endogenously expressed in S. cerevisiae, and a proteoliposome assay system was used to study homogenously overexpressed and purified ScENT1 (wildtype relative to L390A and F249I mutants). L390 and F249 are highly conserved residues and were found to alter transporter function. L390A produced a reduction of mean transport activity while F249I increased mean substrate translocation relative to wildtype protein. However, both mutations resulted in transport of UTP-a novel gain of function for any ENT. These residues were then mapped onto an ab initio model of FUN26 which suggests they function in substrate translocation (L390) or cytoplasmic gating (F249). Furthermore, wildtype, L390A, and F249I were found to be sensitive to the presence of alcohols. Ethanol attenuated ScENT1-mediated transport of uridine by ~50%. These findings further demonstrate functional similarities between ScENT1 and human ENT isoforms and support identification of FUN26 as ScENT1, the first ENT isoform in S. cerevisiae.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Transporte de Nucleosídeo Equilibrativas/genética , Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Nucleosídeos/genética , Nucleosídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Protein Expr Purif ; 142: 68-74, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28918196

RESUMO

Nucleosides play an essential role in the physiology of eukaryotes by acting as metabolic precursors in de novo nucleic acid synthesis and energy metabolism. Nucleosides also act as ligands for purinergic receptors. Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that aid in regulating plasmalemmal flux of purine and pyrimidine nucleosides and nucleobases. ENTs exhibit broad substrate selectivity across different isoforms and utilize diverse mechanisms to drive substrate flux across membranes. However, the molecular mechanisms and chemical determinants of ENT-mediated substrate recognition, binding, inhibition, and transport are poorly understood. To determine how ENT-mediated transport occurs at the molecular level, greater chemical insight and assays employing purified protein are essential. This article focuses on the expression and purification of human ENT1, human ENT2, and Saccharomyces cerevisiae ScENT1 using novel expression and purification strategies to isolate recombinant ENTs. ScENT1, hENT1, and hENT2 were expressed in W303 Saccharomyces cerevisiae cells and detergent solubilized from the membrane. After detergent extraction, these ENTs were further purified using immobilized metal affinity chromatography and size exclusion chromatography. This effort resulted in obtaining quantities of purified protein sufficient for future biophysical analysis.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/genética , Plasmídeos/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cromatografia de Afinidade , Cromatografia em Gel , Clonagem Molecular , Detergentes/química , Transportador Equilibrativo 1 de Nucleosídeo/biossíntese , Transportador Equilibrativo 1 de Nucleosídeo/isolamento & purificação , Transportador Equilibrativo 2 de Nucleosídeo/biossíntese , Transportador Equilibrativo 2 de Nucleosídeo/isolamento & purificação , Expressão Gênica , Humanos , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Transporte Vesicular/biossíntese , Proteínas de Transporte Vesicular/isolamento & purificação
3.
AAPS J ; 20(1): 8, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192381

RESUMO

Recent findings have discovered how insufficiency of ATP-binding cassette (ABC) transporter, ABCB6, can negatively impact human health. These advances were made possible by, first, finding that ABCB6 deficiency was the genetic basis for some severe transfusion reactions and by, second, determining that functionally impaired ABCB6 variants enhanced the severity of porphyria, i.e., diseases associated with defects in heme synthesis. ABCB6 is a broad-spectrum porphyrin transporter that is capable of both exporting and importing heme and its precursors across the plasma membrane and outer mitochondrial membrane, respectively. Biochemical studies have demonstrated that while ABCB6 influences the antioxidant system by reducing the levels of reactive oxygen species, the exact mechanism is currently unknown, though effects on heme synthesis are likely. Furthermore, it is unknown what biochemical or cellular signals determine where ABCB6 localizes in the cell. This review highlights the major recent findings on ABCB6 and focuses on details of its structure, mechanism, transport, contributions to cellular stress, and current clinical implications.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Transportadores de Cassetes de Ligação de ATP/análise , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico , Humanos , Estresse Fisiológico
4.
Nucleosides Nucleotides Nucleic Acids ; 36(1): 7-30, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27759477

RESUMO

Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that mediate the transport of nucleosides, nucleobases, and therapeutic analogs. The best-characterized ENTs are the human transporters hENT1 and hENT2. However, non-mammalian eukaryotic ENTs have also been studied (e.g., yeast, parasitic protozoa). ENTs are major pharmaceutical targets responsible for modulating the efficacy of more than 30 approved drugs. However, the molecular mechanisms and chemical determinants of ENT-mediated substrate recognition, binding, inhibition, and transport are poorly understood. This review highlights findings on the characterization of ENTs by surveying studies on genetics, permeant and inhibitor interactions, mutagenesis, and structural models of ENT function.


Assuntos
Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Animais , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Técnicas de Inativação de Genes , Humanos , Terapia de Alvo Molecular/métodos , Mutagênese , Neoplasias/metabolismo , Neoplasias/mortalidade , Proteínas de Transporte de Nucleosídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleosídeos/química , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/metabolismo
5.
Methods Mol Biol ; 1432: 163-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27485336

RESUMO

Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Clonagem Molecular , Expressão Gênica , Proteínas de Membrana/química , Plasmídeos/genética , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
6.
Protein Expr Purif ; 106: 57-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25266791

RESUMO

Heat shock proteins (HSP) perform vital cellular functions and modulate cell response pathways to physical and chemical stressors. A key feature of HSP function is the ability to interact with a broad array of protein binding partners as a means to potentiate downstream response pathways or facilitate protein folding. These binding interactions are driven by ATP-dependent conformational rearrangements in HSP proteins. The HSP70 family is evolutionarily conserved and is associated with diabetes and cancer progression and the etiopathogenesis of hepatic, cardiovascular, and neurological disorders in humans. However, functional characterization of human HSP70s has been stymied by difficulties in obtaining large quantities of purified protein. Studies of purified human HSP70 proteins are essential for downstream investigations of protein-protein interactions and in the rational design of novel family-specific therapeutics. Within this work, we present optimized protocols for the heterologous overexpression and purification of either the nucleotide binding domain (NBD) or the nucleotide and substrate binding domains of human HSPA9, HSPA8, and HSPA5 in either Escherichia coli or Saccharomyces cerevisiae. We also include initial biophysical characterization of HSPA9 and HSPA8. This work provides the basis for future biochemical studies of human HSP70 protein function and structure.


Assuntos
Bioquímica/métodos , Fenômenos Biofísicos , Proteínas de Choque Térmico HSP70/metabolismo , Adenosina Trifosfatases/metabolismo , Dicroísmo Circular , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/isolamento & purificação , Humanos , Hidrólise , Cinética , Luz , Desnaturação Proteica , Desdobramento de Proteína , Espalhamento de Radiação , Temperatura , Ultracentrifugação
7.
J Biol Chem ; 289(35): 24440-51, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25035431

RESUMO

Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that transport nucleosides and, to a lesser extent, nucleobases across cell membranes. ENTs modulate efficacy for a range of human therapeutics and function in a diffusion-controlled bidirectional manner. A detailed understanding of ENT function at the molecular level has remained elusive. FUN26 (function unknown now 26) is a putative ENT homolog from S. cerevisiae that is expressed in vacuole membranes. In the present system, proteoliposome studies of purified FUN26 demonstrate robust nucleoside and nucleobase uptake into the luminal volume for a broad range of substrates. This transport activity is sensitive to nucleoside modifications in the C(2')- and C(5')-positions on the ribose sugar and is not stimulated by a membrane pH differential. [(3)H]Adenine nucleobase transport efficiency is increased ∼4-fold relative to nucleosides tested with no observed [(3)H]adenosine or [(3)H]UTP transport. FUN26 mutational studies identified residues that disrupt (G463A or G216A) or modulate (F249I or L390A) transporter function. These results demonstrate that FUN26 has a unique substrate transport profile relative to known ENT family members and that a purified ENT can be reconstituted in proteoliposomes for functional characterization in a defined system.


Assuntos
Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Primers do DNA , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Reação em Cadeia da Polimerase , Proteolipídeos , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA