Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Oncol ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037840

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy which shows unparalleled therapeutic resistance due to its genetic and cellular heterogeneity, dense stromal tissue, and immune-suppressive tumour microenvironment. Oncolytic virotherapy has emerged as a new treatment modality which uses tumour-specific viruses to eliminate cancerous cells. Non-human primate adenoviruses of the human adenovirus B (HAdV-B) species have demonstrated considerable lytic potential in human cancer cells as well as limited preexisting neutralizing immunity in humans. Previously, we have generated a new oncolytic derivative of the gorilla-derived HAdV-B AdV-lumc007 named 'GoraVir'. Here, we show that GoraVir displays oncolytic efficacy in pancreatic cancer cells and pancreatic-cancer-associated fibroblasts. Moreover, it retains its lytic potential in monoculture and co-culture spheroids. In addition, we established the ubiquitously expressed complement receptor CD46 as the main entry receptor for GoraVir. Finally, a single intratumoural dose of GoraVir was shown to delay tumour growth in a BxPC-3 xenograft model at 10 days post-treatment. Collectively, these data demonstrate that the new gorilla-derived oncolytic adenovirus is a potent oncolytic vector candidate that targets both pancreatic cancer cells and tumour-adjacent stroma.

2.
Viruses ; 15(2)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851497

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy which shows unparalleled therapeutic resistance. Oncolytic viruses have emerged as a new treatment approach and convey their antitumor activity through lysis of cancer cells. The therapeutic efficacy of oncolytic viruses is largely dependent on the induction of immunogenic cell death (ICD) and the subsequent antitumor immune responses. However, the concurrent generation of antiviral immune responses may also limit the a virus' therapeutic window. GoraVir is a new oncolytic adenovirus derived from the Human Adenovirus B (HAdV-B) isolate AdV-lumc007 which was isolated from a gorilla and has demonstrated excellent lytic activity in both in vitro and in vivo models of PDAC. In this study, we characterized the immunostimulatory profile of cancer cell death induced by GoraVir and the concerted cellular antiviral responses in three conventional pancreatic cancer cell lines. While GoraVir was shown to induce late apoptotic/necrotic cell death at earlier time points post infection than the human adenovirus type 5 (HAdV-C5), similar levels of ICD markers were expressed. Moreover, GoraVir was shown to induce ICD not dependent on STING expression and regardless of subsequent antiviral responses. Together, these data demonstrate that GoraVir is an excellent candidate for use in oncolytic virotherapy.


Assuntos
Adenovírus Humanos , Carcinoma Ductal Pancreático , Vírus Oncolíticos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/terapia , Morte Celular , Adenoviridae/genética , Carcinoma Ductal Pancreático/terapia , Antivirais , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077230

RESUMO

The adenoviruses (AdVs) isolated from humans are taxonomically grouped in seven different species in the Mastadenovirus genus (HAdV-A through G). AdVs isolated from apes are often included in one of the human AdV species. Here we describe the sequence analyses of ten new AdVs that are related to the HAdV-C species and that were isolated from healthy western lowland gorillas, bonobos, chimpanzees, and orangutans kept in Dutch zoos. We analyzed these viruses and compared their genome sequences to those of human- and ape-derived AdV sequences in the NCBI GenBank database. Our data demonstrated that the ape-derived viruses clustering to HAdV-C are markedly distinct from the human HAdV-C species in the size and nucleotide composition (%GC) of their genome, differ in the amino-acid sequence of AdV proteins, and have longer RGD-loops in their penton-base proteins. The viruses form three well-separated clades (the human, the gorilla, and the combined group of the bonobo and chimpanzee viruses), and we propose that these should each be given species-level ranks. The Ad-lumc005 AdV isolated from orangutans was found to be very similar to the gorilla AdVs, and bootstrap inference provided evidence of recombination between the orangutan AdV and the gorilla AdVs. This suggests that this virus may not be a genuine orangutan AdV but may have been transferred from a gorilla to an orangutan host.


Assuntos
Adenovírus Humanos , Hominidae , Mastadenovirus , Adenoviridae/genética , Adenovírus Humanos/genética , Animais , Gorilla gorilla , Hominidae/genética , Humanos , Pan troglodytes , Filogenia , Pongo
4.
Cancer Gene Ther ; 29(6): 793-802, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135475

RESUMO

Treatment of castration-resistant prostate cancer remains a challenging clinical problem. Despite the promising effects of immunotherapy in other solid cancers, prostate cancer has remained largely unresponsive. Oncolytic viruses represent a promising therapeutic avenue, as oncolytic virus treatment combines tumour cell lysis with activation of the immune system and mounting of effective anti-tumour responses. Mammalian Orthoreoviruses are non-pathogenic human viruses with a preference of lytic replication in human tumour cells. In this study, we evaluated the oncolytic efficacy of the bioselected oncolytic reovirus mutant jin-3 in multiple human prostate cancer models. The jin-3 reovirus displayed efficient infection, replication, and anti-cancer responses in 2D and 3D prostate cancer models, as well as in ex vivo cultured human tumour slices. In addition, the jin-3 reovirus markedly reduced the viability and growth of human cancer cell lines and patient-derived xenografts. The infection induced the expression of mediators of immunogenic cell death, interferon-stimulated genes, and inflammatory cytokines. Taken together, our data demonstrate that the reovirus mutant jin-3 displays tumour tropism, and induces potent oncolytic and immunomodulatory responses in human prostate cancer models. Therefore, jin-3 reovirus represents an attractive candidate for further development as oncolytic agent for treatment of patients with aggressive localised or advanced prostate cancer.


Assuntos
Orthoreovirus Mamífero 3 , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias da Próstata , Reoviridae , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Mamíferos , Vírus Oncolíticos/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Reoviridae/genética
5.
Hum Gene Ther ; 33(5-6): 275-289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861769

RESUMO

The use of human adenoviruses (hAds) as oncolytic agents has demonstrated considerable potential. However, their efficacy in clinical studies is generally moderate and often varies between patients. This may, in part, be attributable to variable pre-existing neutralizing immunity in patients, which can impact the antitumor efficacy and lead to response heterogeneity. Our aim was to isolate new Ads for the development of oncolytic vectors with low prevalence of neutralizing immunity in the human population. To this end, we isolated a collection of new nonhuman primate (nhp) Ads from stool samples of four great ape species held captive. We elected 12 isolates comprising the broadest genetic variability for further characterization. For three new nhpAds, all classified as the human adenovirus B (HAdV-B) species, no neutralizing activity could be detected when exposed to a preparation of immunoglobulins isolated from a pool of >1,000 donors as a surrogate of population immunity. In addition, the nhpAds of the HAdV-B species showed enhanced oncolytic potency compared to nhpAds of the HAdV-C species as well as to human adenovirus type 5 (HAdV-C5) in vitro when tested in a panel of 29 human cancer cell lines. Next-generation sequencing of the viral genomes revealed higher sequence similarity between hAds and nhpAds of HAdV-B compared to HAdV-C, which might underlie the differences in oncolytic ability. As a proof-of-concept, the Rb-binding domain of the E1A protein of the gorilla-derived HAdV-B nhpAd-lumc007 was deleted, thereby creating a new oncolytic derivative, which demonstrated increased oncolytic potential compared to HAdV-C5. Collectively, our data demonstrate that nhpAds of the HAdV-B species can serve as an alternative for the development of potent oncolytic Ad vectors with limited pre-existing neutralizing immunity in humans.


Assuntos
Adenovírus Humanos , Neoplasias , Adenoviridae/genética , Adenovírus Humanos/genética , Animais , Genoma Viral , Humanos , Neoplasias/genética , Neoplasias/terapia , Primatas/genética
6.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957644

RESUMO

Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer.


Assuntos
Adenovírus Humanos/metabolismo , Neoplasias/virologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/metabolismo , Receptores Virais/metabolismo , Adenovírus Humanos/genética , Animais , Linhagem Celular Tumoral , Terapia Combinada , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , Humanos , Integrinas/genética , Integrinas/metabolismo , Ácido N-Acetilneuramínico/biossíntese , Ácido N-Acetilneuramínico/metabolismo , Neoplasias/terapia , Vírus Oncolíticos/genética , Receptores Virais/genética
7.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650405

RESUMO

Non-human primate (NHP)-derived adenoviruses have formed a valuable alternative for the use of human adenoviruses in vaccine development and gene therapy strategies by virtue of the low seroprevalence of neutralizing immunity in the human population. The more recent use of several human adenoviruses as oncolytic agents has exhibited excellent safety profiles and firm evidence of clinical efficacy. This proffers the question whether NHP-derived adenoviruses could also be employed for viral oncolysis in human patients. While vaccine vectors are conventionally made as replication-defective vectors, in oncolytic applications replication-competent viruses are used. The data on NHP-derived adenoviral vectors obtained from vaccination studies can only partially support the suitability of NHP-derived adenoviruses for use in oncolytic virus therapy. In addition, the use of NHP-derived adenoviruses in humans might be received warily given the recent zoonotic infections with influenza viruses and coronaviruses. In this review, we discuss the similarities and differences between human- and NHP-derived adenoviruses in view of their use as oncolytic agents. These include their genome organization, receptor use, replication and cell lysis, modulation of the host's immune responses, as well as their pathogenicity in humans. Together, the data should facilitate a rational and data-supported decision on the suitability of NHP-derived adenoviruses for prospective use in oncolytic virus therapy.


Assuntos
Adenoviridae/genética , Vírus Oncolíticos/genética , Animais , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Terapia Viral Oncolítica/métodos , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA