Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(13): 136902, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37831988

RESUMO

Here, we introduce a miniature beamline for transient absorption and dispersion spectroscopy, using a tailored deep ultraviolet field immediately after the noncollinear generation without subsequent optical elements. We explore the near-band-gap region in diamond in the presence of a few-femtosecond pump pulse where the delayed dynamical Franz-Keldysh effect and the almost instantaneous optical Kerr effect coexist.

2.
Adv Mater ; 35(22): e2210788, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949007

RESUMO

Crystal-graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high-quality dataset is engineered to provide a better balance across chemical and crystal-symmetry space. Crystal-graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine-learning-assisted high-throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom-1 . The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap-deformation potentials.

3.
J Chem Phys ; 157(12): 124108, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36182416

RESUMO

Accurate theoretical prediction of the band offsets at interfaces of semiconductor heterostructures can often be quite challenging. Although density functional theory has been reasonably successful to carry out such calculations, efficient, accurate semilocal functionals are desirable to reduce the computational cost. In general, the semilocal functionals based on the generalized gradient approximation (GGA) significantly underestimate the bulk bandgaps. This, in turn, results in inaccurate estimates of the band offsets at the heterointerfaces. In this paper, we investigate the performance of several advanced meta-GGA functionals in the computational prediction of band offsets at semiconductor heterojunctions. In particular, we investigate the performance of r2SCAN (two times revised strongly constrained and appropriately normed functional), rMGGAC (revised semilocal functional based on cuspless hydrogen model and Pauli kinetic energy density functional), mTASK (modified Aschebrock and Kümmel meta-GGA functional), and local modified Becke-Johnson exchange-correlation functionals. Our results strongly suggest that these meta-GGA functionals for supercell calculations perform quite well, especially, when compared to computationally more demanding GW calculations. We also present band offsets calculated using ionization potentials and electron affinities, as well as band alignment via the branch point energies. Overall, our study shows that the aforementioned meta-GGA functionals can be used within the density functional theory framework to estimate the band offsets in semiconductor heterostructures with predictive accuracy.

4.
Sci Data ; 9(1): 64, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236866

RESUMO

In the past decade we have witnessed the appearance of large databases of calculated material properties. These are most often obtained with the Perdew-Burke-Ernzerhof (PBE) functional of density-functional theory, a well established and reliable technique that is by now the standard in materials science. However, there have been recent theoretical developments that allow for increased accuracy in the calculations. Here, we present a dataset of calculations for 175k crystalline materials obtained with two functionals: geometry optimizations are performed with PBE for solids (PBEsol) that yields consistently better geometries than the PBE functional, and energies are obtained from PBEsol and from SCAN single-point calculations at the PBEsol geometry. Our results provide an accurate overview of the landscape of stable (and nearly stable) materials, and as such can be used for reliable predictions of novel compounds. They can also be used for training machine learning models, or even for the comparison and benchmark of PBE, PBEsol, and SCAN.

5.
Adv Sci (Weinh) ; 9(12): e2105722, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182039

RESUMO

Indium antimonide (InSb) nanowires are used as building blocks for quantum devices because of their unique properties, that is, strong spin-orbit interaction and large Landé g-factor. Integrating InSb nanowires with other materials could potentially unfold novel devices with distinctive functionality. A prominent example is the combination of InSb nanowires with superconductors for the emerging topological particles research. Here, the combination of the II-VI cadmium telluride (CdTe) with the III-V InSb in the form of core-shell (InSb-CdTe) nanowires is investigated and potential applications based on the electronic structure of the InSb-CdTe interface and the epitaxy of CdTe on the InSb nanowires are explored. The electronic structure of the InSb-CdTe interface using density functional theory is determined and a type-I band alignment is extracted with a small conduction band offset ( ⩽0.3 eV). These results indicate the potential application of these shells for surface passivation or as tunnel barriers in combination with superconductors. In terms of structural quality, it is demonstrated that the lattice-matched CdTe can be grown epitaxially on the InSb nanowires without interfacial strain or defects. These shells do not introduce disorder to the InSb nanowires as indicated by the comparable field-effect mobility measured for both uncapped and CdTe-capped nanowires.

6.
Sci Adv ; 7(49): eabi7948, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860548

RESUMO

Graph neural networks for crystal structures typically use the atomic positions and the atomic species as input. Unfortunately, this information is not available when predicting new materials, for which the precise geometrical information is unknown. We circumvent this problem by replacing the precise bond distances with embeddings of graph distances. This allows our networks to be applied directly in high-throughput studies based on both composition and crystal structure prototype without using relaxed structures as input. To train these networks, we curate a dataset of over 2 million density functional calculations of crystals with consistent calculation parameters. We apply the resulting model to the high-throughput search of 15 million tetragonal perovskites of composition ABCD2. As a result, we identify several thousand potentially stable compounds and demonstrate that transfer learning from the newly curated dataset reduces the required training data by 50%.

7.
J Chem Phys ; 155(10): 104103, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525814

RESUMO

The density-functional theory (DFT) approximations that are the most accurate for the calculation of bandgap of bulk materials are hybrid functionals, such as HSE06, the modified Becke-Johnson (MBJ) potential, and the GLLB-SC potential. More recently, generalized gradient approximations (GGAs), such as HLE16, or meta-GGAs, such as (m)TASK, have also proven to be quite accurate for the bandgap. Here, the focus is on two-dimensional (2D) materials and the goal is to provide a broad overview of the performance of DFT functionals by considering a large test set of 298 2D systems. The present work is an extension of our recent studies [T. Rauch, M. A. L. Marques, and S. Botti, Phys. Rev. B 101, 245163 (2020); Patra et al., J. Phys. Chem. C 125, 11206 (2021)]. Due to the lack of experimental results for the bandgap of 2D systems, G0W0 results were taken as reference. It is shown that the GLLB-SC potential and mTASK functional provide the bandgaps that are the closest to G0W0. Following closely, the local MBJ potential has a pretty good accuracy that is similar to the accuracy of the more expensive hybrid functional HSE06.

8.
Phys Chem Chem Phys ; 23(31): 16942-16947, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338249

RESUMO

We investigate a family of free-standing quasi-two-dimensional silicon structures based on a planar square bilayer with adatom decorations. When attached to the bilayer, these adatoms form local reconstructions which resemble either a bishop's hat or elongated square bipyramids. We systematically constructed members of this family via exhaustive enumeration and then studied them using tight-binding and density-functional theory. We find that this geometry contributes significantly to the stability of the resulting structures, with some squared bilayers energetically more stable than the honeycomb bilayers. The most interesting phases were then characterized in more detail, and they all turned out metallic. Finally, we propose the [100] surface of ZrO2 as the most suitable substrate for the synthesis of these two-dimensional phases.

9.
J Chem Theory Comput ; 17(8): 4746-4755, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242509

RESUMO

The knowledge of electronic properties of matter is the key to the understanding of its properties and to propose useful applications. To model hybrid organic/inorganic systems with the plane-wave approach, large supercells with many atoms are usually necessary to minimize artificial interactions between periodic images. For such systems, accurate approximations to the exchange-correlation functional of density functional theory, such as hybrid functionals, become computationally expensive, and cheaper approaches need to be considered. Here, we apply the local modified Becke-Johnson exchange-correlation potential to free molecules and surfaces and study its accuracy for calculated ionization potentials. This quantity being important to understand the band alignment of composite heterogeneous systems, we demonstrate the application of the potential to the electronic structure calculation of an exemplary composite semiconductor/molecule system, namely, a F6-TCNNQ molecule adsorbed on a hydrogenated Si(111) surface.

10.
Nano Lett ; 21(8): 3619-3625, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33843244

RESUMO

Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties. Electron microscopy and atomistic modeling are used to reconstruct and visualize this stacking fault and its terminating dislocations in the crystal. From band structure calculations coupled to photoluminescence measurements, we conclude that the I3 defect does not create states within the hex-Ge and hex-Si band gap. Therefore, the defect is not detrimental to the optoelectronic properties of the hex-SiGe materials family. Finally, highlighting the properties of this defect can be of great interest to the community of hex-III-Ns, where this defect is also present.

11.
J Phys Chem A ; 125(6): 1325-1335, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33554602

RESUMO

A recent study associates carbon with single photon emitters (SPEs) in hexagonal boron nitride (h-BN). This observation, together with the high mobility of carbon in h-BN, suggests the existence of SPEs based on carbon clusters. Here, by means of density functional theory calculations, we studied clusters of substitutional carbon atoms up to tetramers in h-BN. Two different conformations of neutral carbon trimers have zero-point line energies and shifts of the phonon sideband compatible with typical photoluminescence spectra. Moreover, some conformations of two small C clusters next to each other result in photoluminescence spectra similar to those found in the experiments. We also showed that vacancies are unable to reproduce the typical features of the phonon sideband observed in most measurements because of the large spectral weight of low-energy breathing modes, ubiquitous in such defects.

12.
Nat Commun ; 12(1): 811, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547276

RESUMO

A major issue that prevents a full understanding of heterogeneous materials is the lack of systematic first-principles methods to consistently predict energetics and electronic properties of reconstructed interfaces. In this work we address this problem with an efficient and accurate computational scheme. We extend the minima-hopping method implementing constraints crafted for two-dimensional atomic relaxation and enabling variations of the atomic density close to the interface. A combination of density-functional and accurate density-functional tight-binding calculations supply energy and forces to structure prediction. We demonstrate the power of this method by applying it to extract structure-property relations for a large and varied family of symmetric and asymmetric tilt boundaries in polycrystalline silicon. We find a rich polymorphism in the interface reconstructions, with recurring bonding patterns that we classify in increasing energetic order. Finally, a clear relation between bonding patterns and electrically active grain boundary states is unveiled and discussed.

13.
Phys Chem Chem Phys ; 23(5): 3321-3326, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33507189

RESUMO

Metallization and dissociation are key transformations in diatomic molecules at high densities particularly significant for modeling giant planets. Using X-ray absorption spectroscopy and atomistic modeling, we demonstrate that in halogens, the formation of a connected molecular structure takes place at pressures well below metallization. Here we show that the iodine diatomic molecule first elongates by ∼0.007 Å up to a critical pressure of Pc ∼ 7 GPa, developing bonds between molecules. Then its length continuously decreases with pressure up to 15-20 GPa. Universal trends in halogens are shown and allow us to predict for chlorine a pressure of 42 ± 8 GPa for molecular bond-length reversal. Our findings contribute to tackling the molecule invariability paradigm in diatomic molecular phases at high pressures and may be generalized to other abundant diatomic molecules in the universe, including hydrogen.

14.
ACS Omega ; 5(22): 13268-13277, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548513

RESUMO

We report a systematic investigation on the electronic and optical properties of the smallest stable clusters of alkaline-earth metal fluorides, namely, MgF2, CaF2, SrF2, and BaF2. For these clusters, we perform density functional theory (DFT) and time-dependent DFT (TDDFT) calculations with a localized Gaussian basis set. For each molecule ((MF2) n , n = 1-3, M = Mg, Ca, Sr, Ba), we determine a series of molecular properties, namely, ground-state energies, fragmentation energies, electron affinities, ionization energies, fundamental energy gaps, optical absorption spectra, and exciton binding energies. We compare electronic and optical properties between clusters of different sizes with the same metal atom and between clusters of the same size with different metal atoms. From this analysis, it turns out that MgF2 clusters have distinguished ground-state and excited-state properties with respect to the other fluoride molecules. Sizeable reductions of the optical onset energies and a consistent increase of excitonic effects are observed for all clusters under study with respect to the corresponding bulk systems. Possible consequences of the present results are discussed with respect to applied and fundamental research.

15.
J Chem Theory Comput ; 16(6): 3620-3627, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32407117

RESUMO

Nowadays pseudopotential (PP) density functional theory calculations constitute the standard approach to tackle solid-state electronic problems. These rely on distributed PP tables that were built from all-electron atomic calculations using few popular semilocal exchange-correlation functionals, while PPs based on more modern functionals, such as meta-generalized gradient approximation and hybrid functionals, or for many-body methods, such as GW, are often not available. Because of this, employing PPs created with inconsistent exchange-correlation functionals has become a common practice. Our aim is to quantify systematically the error in the determination of the electronic band gap when cross-functional PP calculations are performed. To this end, we compare band gaps obtained with norm-conserving PPs or the projector-augmented wave method with all-electron calculations for a large data set of 473 solids. We focus, in particular, on density functionals that were designed specifically for band gap calculations. On average, the absolute error is about 0.1 eV, yielding absolute relative errors in the 5-10% range. Considering that typical errors stemming from the choice of the functional are usually larger, we conclude that the effect of choosing an inconsistent PP is rather harmless for most applications. However, we find specific cases where absolute errors can be larger than 1 eV or others where relative errors can amount to a large fraction of the band gap.

16.
Phys Chem Chem Phys ; 22(16): 8442-8449, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32271332

RESUMO

The semimetallic bandstructure of graphene and silicene limit their use in functional devices. Mixing silicon and carbon offers a rather unexplored pathway to build semiconducting sheets compatible with current Si-based electronics. We present here a complete theoretical study of the phase diagram of two-dimensional silicon-carbon binaries. To scan the composition range, we employ an ab initio global structural prediction method, complemented by exhaustive enumeration of two-dimensional structure prototypes. We find a wealth of two-dimensional low-energy structures, from standard honeycomb single- and double-layers, passing by dumbbell geometries, to carbon nanosheets bridged by Si atoms. Many of these phases depart from planarity, either through buckling, or by germinating three-dimensional networks with a mixture of sp2 and sp3 bonds. We further characterize the most interesting crystal structures, unveiling a large variety of electronic properties, that could be exploited to develop high-performance electronic devices at the nanoscale.

17.
Nature ; 580(7802): 205-209, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269353

RESUMO

Silicon crystallized in the usual cubic (diamond) lattice structure has dominated the electronics industry for more than half a century. However, cubic silicon (Si), germanium (Ge) and SiGe alloys are all indirect-bandgap semiconductors that cannot emit light efficiently. The goal1 of achieving efficient light emission from group-IV materials in silicon technology has been elusive for decades2-6. Here we demonstrate efficient light emission from direct-bandgap hexagonal Ge and SiGe alloys. We measure a sub-nanosecond, temperature-insensitive radiative recombination lifetime and observe an emission yield similar to that of direct-bandgap group-III-V semiconductors. Moreover, we demonstrate that, by controlling the composition of the hexagonal SiGe alloy, the emission wavelength can be continuously tuned over a broad range, while preserving the direct bandgap. Our experimental findings are in excellent quantitative agreement with ab initio theory. Hexagonal SiGe embodies an ideal material system in which to combine electronic and optoelectronic functionalities on a single chip, opening the way towards integrated device concepts and information-processing technologies.

18.
J Chem Theory Comput ; 16(4): 2654-2660, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32097004

RESUMO

The modified Becke-Johnson meta-GGA potential of density functional theory has been shown to be the best exchange-correlation potential to determine band gaps of crystalline solids. However, it cannot be consistently used for the electronic structure of nonperiodic or nanostructured systems. We propose an extension of this potential that enables its use to study heterogeneous, finite, and low-dimensional systems. This is achieved by using a coordinate-dependent expression for the parameter c that weights the Becke-Russel exchange, in contrast to the original global formulation, where c is just a fitted number. Our potential takes advantage of the excellent description of band gaps provided by the modified Becke-Johnson potential and preserves its modest computational effort. Furthermore, it yields with one single calculation band diagrams and band offsets of heterostructures and surfaces. We exemplify the usefulness and efficiency of our local meta-GGA potential by testing it for a series of interfaces (Si/SiO2, AlAs/GaAs, AlP/GaP, and GaP/Si), a Si surface, and boron nitride monolayer.

20.
J Chem Phys ; 151(16): 161102, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675851

RESUMO

During the last few years, it has become more and more clear that functionals of the meta generalized gradient approximation (MGGA) are more accurate than GGA functionals for the geometry and energetics of electronic systems. However, MGGA functionals are also potentially more interesting for the electronic structure, in particular, when the potential is nonmultiplicative (i.e., when MGGAs are implemented in the generalized Kohn-Sham framework), which may help to get more accurate bandgaps. Here, we show that the calculation of bandgap of solids with MGGA functionals can also be done very accurately in a non-self-consistent manner. This scheme uses only the total energy and can, therefore, be very useful when the self-consistent implementation of a particular MGGA functional is not available. Since self-consistent MGGA calculations may be difficult to converge, the non-self-consistent scheme may also help to speed up the calculations. Furthermore, it can be applied to any other types of functionals, for which the implementation of the corresponding potential is not trivial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA