RESUMO
Symbiotic microbes can affect host behavior and fitness. Gut microbiota have received the most study, with less attention to other important microbial communities like those of scent-producing glands such as mammalian anal glands and the avian uropygial gland. However, mounting evidence suggests that microbes inhabiting scent-producing glands play an important role in animal behavior by contributing to variation in chemical signals. Free-living and captive conditions typically differ in social environment, food diversity and availability, disease exposure, and other factors-all of which can translate into differences in gut microbiota. However, whether extrinsic factors such as captivity alter microbial communities in scent glands remains an open question. We compared the uropygial gland microbiota of free-living and captive song sparrows (Melospiza melodia) and tested for an effect of dietary manipulations on the gland microbiota of captive birds. As predicted, the uropygial gland microbiota was significantly different between free-living and captive birds. Surprisingly, microbial diversity was higher in captive than free-living birds, and we found no effect of dietary treatments on captive bird microbiota. Identifying the specific factors responsible for microbial differences among groups and determining whether changes in symbiotic microbiota alter behavior and fitness are important next steps in this field.
Assuntos
Microbiota , Passeriformes , Aves Canoras , Animais , Glândulas Odoríferas , Simbiose , Glândulas Sebáceas , MamíferosRESUMO
Mercury is a global pollutant and potent neurotoxic metal. Its most toxic and bioavailable form, methylmercury, can have both lethal and sublethal effects on wildlife. In birds, methylmercury exposure can disrupt behavior, hormones, the neuroendocrine system, and feather integrity. Lipid-rich tissues and secretions may be particularly susceptible to disruption by lipophilic contaminants such as methylmercury. One such substance is feather preen oil, a waxy secretion of the uropygial gland that serves multiple functions including feather maintenance, anti-parasitic defense, and chemical signaling. If methylmercury exposure alters preen oil composition, it could have cascading effects on feather quality, susceptibility to ectoparasites, and mate choice and other social behaviors. We investigated whether exposure to methylmercury, either alone or in association with other stressors, affects preen oil chemical composition. We used a two-factor design to expose adult song sparrows (Melospiza melodia) to an environmentally relevant dietary dose of methylmercury and/or to another stressor (unpredictable food supply) for eight weeks. The wax ester composition of preen oil changed significantly over the 8-week experimental period. This change was more pronounced in the unpredictable food treatment, regardless of dietary methylmercury. Contrary to our prediction, we found no main effect of methylmercury exposure on preen oil composition, nor did methylmercury interact with unpredictable food supply in predicting the magnitude of chemical shifts in preen oil. While it remains critical to study sublethal effects of methylmercury on wildlife, our findings suggest that the wax ester composition of preen oil is robust to environmentally relevant doses of this contaminant.