Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Reprod Health ; 6: 1330161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406668

RESUMO

Mitogen-activated protein kinases (MAPKs) represent widely expressed and evolutionarily conserved proteins crucial for governing signaling pathways and playing essential roles in mammalian male reproductive processes. These proteins facilitate the transmission of signals through phosphorylation cascades, regulating diverse intracellular functions encompassing germ cell development in testis, physiological maturation of spermatozoa within the epididymis, and motility regulation at ejaculation in the female reproductive tract. The conservation of these mechanisms appears prevalent across species, including humans, mice, and, to a limited extent, livestock species such as bovines. In Sertoli cells (SCs), MAPK signaling not only regulates the proliferation of immature SCs but also determines the appropriate number of SCs in the testes at puberty, thereby maintaining male fertility by ensuring the capacity for sperm cell production. In germ cells, MAPKs play a crucial role in dynamically regulating testicular cell-cell junctions, supporting germ cell proliferation and differentiation. Throughout spermatogenesis, MAPK signaling ensures the appropriate Sertoli-to-germ cell ratio by regulating apoptosis, controlling the metabolism of developing germ cells, and facilitating the maturation of spermatozoa within the cauda epididymis. During ejaculation in the female reproductive tract, MAPKs regulate two pivotal events-capacitation and the acrosome reaction essential for maintaining the fertility potential of sperm cells. Any disruptions in MAPK pathway signaling possibly may disturb the testicular microenvironment homeostasis, sperm physiology in the male body before ejaculation and in the female reproductive tract during fertilization, ultimately compromising male fertility. Despite decades of research, the physiological function of MAPK pathways in male reproductive health remains inadequately understood. The current review attempts to combine recent findings to elucidate the impact of MAPK signaling on male fertility and proposes future directions to enhance our understanding of male reproductive functions.

2.
PLoS Pathog ; 15(6): e1007777, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31247052

RESUMO

The majority of invasive human fungal pathogens gain access to their human hosts via the inhalation of spores from the environment into the lung, but relatively little is known about this infectious process. Among human fungal pathogens the most frequent cause of inhaled fatal fungal disease is Cryptococcus, which can disseminate from the lungs to other tissues, including the brain, where it causes meningoencephalitis. To determine the mechanisms by which distinct infectious particles of Cryptococcus cause disseminated disease, we evaluated two developmental cell types (spores and yeast) in mouse models of infection. We discovered that while both yeast and spores from several strains cause fatal disease, there was a consistently higher fungal burden in the brains of spore-infected mice. To determine the basis for this difference, we compared the pathogenesis of avirulent yeast strains with their spore progeny derived from sexual crosses. Strikingly, we discovered that spores produced by avirulent yeast caused uniformly fatal disease in the murine inhalation model of infection. We determined that this difference in outcome is associated with the preferential dissemination of spores to the lymph system. Specifically, mice infected with spores harbored Cryptococcus in their lung draining lymph nodes as early as one day after infection, whereas mice infected with yeast did not. Furthermore, phagocyte depletion experiments revealed this dissemination to the lymph nodes to be dependent on CD11c+ phagocytes, indicating a critical role for host immune cells in preferential spore trafficking. Taken together, these data support a model in which spores capitalize on phagocytosis by immune cells to escape the lung and gain access to other tissues, such as the central nervous system, to cause fatal disease. These previously unrealized insights into early interactions between pathogenic fungal spores and lung phagocytes provide new opportunities for understanding cryptococcosis and other spore-mediated fungal diseases.


Assuntos
Criptococose/imunologia , Cryptococcus/imunologia , Exposição por Inalação , Meningoencefalite/imunologia , Fagócitos/imunologia , Esporos Fúngicos/imunologia , Animais , Criptococose/patologia , Cryptococcus/patogenicidade , Modelos Animais de Doenças , Humanos , Pulmão/imunologia , Pulmão/patologia , Meningoencefalite/patologia , Camundongos , Fagócitos/patologia , Fagocitose , Células RAW 264.7 , Esporos Fúngicos/patogenicidade
3.
Infect Immun ; 84(10): 3047-62, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481252

RESUMO

Cryptococcal meningoencephalitis is a fungal infection that predominantly affects immunocompromised patients and is uniformly fatal if left untreated. Timely diagnosis is difficult, and screening or prophylactic measures have generally not been successful. Thus, we need a better understanding of early, asymptomatic pathogenesis. Inhaled cryptococci must survive the host immune response, escape the lung, and persist within the bloodstream in order to reach and invade the brain. Here we took advantage of the zebrafish larval infection model to assess the process of cryptococcal infection and disease development sequentially in a single host. Using yeast or spores as infecting particles, we discovered that both cell types survived and replicated intracellularly and that both ultimately established a sustained, low-level fungemia. We propose that the establishment and maintenance of this sustained fungemia is an important stage of disease progression that has been difficult to study in other model systems. Our data suggest that sustained fungemia resulted from a pattern of repeated escape from, and reuptake by, macrophages, but endothelial cells were also seen to play a role as a niche for cryptococcal survival. Circulating yeast collected preferentially in the brain vasculature and eventually invaded the central nervous system (CNS). As suggested previously in a mouse model, we show here that neutrophils can play a valuable role in limiting the sustained fungemia, which can lead to meningoencephalitis. This early stage of pathogenesis-a balanced interaction between cryptococcal cells, macrophages, endothelial cells, and neutrophils-could represent a window for timely detection and intervention strategies for cryptococcal meningoencephalitis.


Assuntos
Doenças do Sistema Nervoso Central/microbiologia , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Células Endoteliais/microbiologia , Fungemia/microbiologia , Macrófagos/microbiologia , Neutrófilos/microbiologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/fisiologia , Análise de Regressão , Esporos Fúngicos/patogenicidade , Peixe-Zebra
4.
G3 (Bethesda) ; 6(9): 2707-16, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27402359

RESUMO

Microsporidia are ubiquitous parasites that infect a wide range of animal hosts, and these fungal-related microbes undergo their entire replicative lifecycle inside of host cells. Despite being widespread in the environment and causing medical and agricultural harm, virtually nothing is known about the host factors important to facilitate their growth and development inside of host cells. Here, we perform a genetic screen to identify host transcription factors important for development of the microsporidian pathogen Nematocida parisii inside intestinal cells of its natural host, the nematode Caenorhabditis elegans Through this screen, we identified the C. elegans Myc family of transcription factors as key host regulators of microsporidia growth and development. The Mad-like transcription factor MDL-1, and the Max-like transcription factors MXL-1 and MXL-2 promote pathogen levels, while the Myc-Mondo-like transcription factor MML-1 inhibits pathogen levels. We used epistasis analysis to show that MDL-1 and MXL-1, which are thought to function as a heterodimer, appear to be acting canonically. In contrast, MXL-2 and MML-1, which are also thought to function as a heterodimer, appear to be acting in separate pathways (noncanonically) in the context of pathogen infection. We also found that both MDL-1::GFP and MML-1::GFP are expressed in intestinal cells during infection. These findings provide novel insight into the host transcription factors that regulate microsporidia development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Microsporídios/genética , Transativadores/genética , Animais , Caenorhabditis elegans/microbiologia , Citoplasma/genética , Citoplasma/microbiologia , Epistasia Genética , Interações Hospedeiro-Patógeno/genética , Intestinos/microbiologia , Microsporídios/patogenicidade , Proteínas Proto-Oncogênicas c-myc/genética
5.
PLoS Pathog ; 12(6): e1005724, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27362540

RESUMO

Microbial pathogens often establish infection within particular niches of their host for replication. Determining how infection occurs preferentially in specific host tissues is a key aspect of understanding host-microbe interactions. Here, we describe the discovery of a natural microsporidian parasite of the nematode Caenorhabditis elegans that displays a unique tissue tropism compared to previously described parasites of this host. We characterize the life cycle of this new species, Nematocida displodere, including pathogen entry, intracellular replication, and exit. N. displodere can invade multiple host tissues, including the epidermis, muscle, neurons, and intestine of C. elegans. Despite robust invasion of the intestine very little replication occurs there, with the majority of replication occurring in the muscle and epidermis. This feature distinguishes N. displodere from two closely related microsporidian pathogens, N. parisii and N. sp. 1, which exclusively invade and replicate in the intestine. Comparison of the N. displodere genome with N. parisii and N. sp. 1 reveals that N. displodere is the earliest diverging species of the Nematocida genus. Over 10% of the proteins encoded by the N. displodere genome belong to a single species-specific family of RING-domain containing proteins of unknown function that may be mediating interactions with the host. Altogether, this system provides a powerful whole-animal model to investigate factors responsible for pathogen growth in different tissue niches.


Assuntos
Caenorhabditis elegans/parasitologia , Microsporídios/genética , Microsporídios/patogenicidade , Microsporidiose/parasitologia , Animais , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão
6.
Integr Biol (Camb) ; 8(5): 603-15, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27026574

RESUMO

Germination of spores into actively growing cells is a process essential for survival and pathogenesis of many microbes. Molecular mechanisms governing germination, however, are poorly understood in part because few tools exist for evaluating and interrogating the process. Here, we introduce an assay that leverages developments in microfluidic technology and image processing to quantitatively measure germination with unprecedented resolution, assessing both individual cells and the population as a whole. Using spores from Cryptococcus neoformans, a leading cause of fatal fungal disease in humans, we developed a platform to evaluate spores as they undergo morphological changes during differentiation into vegetatively growing yeast. The assay uses pipet-accessible microdevices that can be arrayed for efficient testing of diverse microenvironmental variables, including temperature and nutrients. We discovered that temperature influences germination rate, a carbon source alone is sufficient to induce germination, and the addition of a nitrogen source sustains it. Using this information, we optimized the assay for use with fungal growth inhibitors to pinpoint stages of germination inhibition. Unexpectedly, the clinical antifungal drugs amphotericin B and fluconazole did not significantly alter the process or timing of the transition from spore to yeast, indicating that vegetative growth and germination are distinct processes in C. neoformans. Finally, we used the high temporal resolution of the assay to determine the precise defect in a slow-germination mutant. Combining advances in microfluidics with a robust fungal molecular genetic system allowed us to identify and alter key temporal, morphological, and molecular events that occur during fungal germination.


Assuntos
Reatores Biológicos/microbiologia , Carbono/metabolismo , Cryptococcus neoformans/citologia , Cryptococcus neoformans/crescimento & desenvolvimento , Dispositivos Lab-On-A-Chip , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura
7.
Cell Microbiol ; 18(1): 30-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26147591

RESUMO

Many intracellular pathogens co-opt actin in host cells, but little is known about these interactions in vivo. We study the in vivo trafficking and exit of the microsporidian Nematocida parisii, which is an intracellular pathogen that infects intestinal cells of the nematode Caenorhabditis elegans. We recently demonstrated that N. parisii uses directional exocytosis to escape out of intestinal cells into the intestinal tract. Here, we show that an intestinal-specific isoform of C. elegans actin called ACT-5 forms coats around membrane compartments that contain single exocytosing spores, and that these coats appear to form after fusion with the apical membrane. We performed a genetic screen for host factors required for actin coat formation and identified small GTPases important for this process. Through analysis of animals defective in these factors, we found that actin coats are not required for pathogen exit although they may boost exocytic output. Later during infection, we find that ACT-5 also forms coats around membrane-bound vesicles that contain multiple spores. These vesicles are likely formed by clathrin-dependent compensatory endocytosis to retrieve membrane material that has been trafficked to the apical membrane as part of the exocytosis process. These findings provide insight into microsporidia interaction with host cells, and provide novel in vivo examples of the manner in which intracellular pathogens co-opt host actin during their life cycle.


Assuntos
Actinas/metabolismo , Caenorhabditis elegans/microbiologia , Células Epiteliais/microbiologia , Exocitose , Interações Hospedeiro-Patógeno , Microsporídios/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais
8.
Eukaryot Cell ; 13(9): 1158-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25001408

RESUMO

Among pathogenic environmental fungi, spores are thought to be infectious particles that germinate in the host to cause disease. The meningoencephalitis-causing yeast Cryptococcus neoformans is found ubiquitously in the environment and sporulates in response to nutrient limitation. While the yeast form has been studied extensively, relatively little is known about spore biogenesis, and spore germination has never been evaluated at the molecular level. Using genome transcript analysis of spores and molecular genetic approaches, we discovered that trehalose homeostasis plays a key role in regulating sporulation of C. neoformans, is required for full spore viability, and influences virulence. Specifically, we found that genes involved in trehalose metabolism, including a previously uncharacterized secreted trehalase (NTH2), are highly overrepresented in dormant spores. Deletion of the two predicted trehalases in the C. neoformans genome, NTH1 and NTH2, resulted in severe defects in spore production, a decrease in spore germination, and an increase in the production of alternative developmental structures. This shift in cell types suggests that trehalose levels modulate cell fate decisions during sexual development. We also discovered that deletion of the NTH2 trehalase results in hypervirulence in a murine model of infection. Taken together, these data show that the metabolic adaptations that allow this fungus to proliferate ubiquitously in the environment play unexpected roles in virulence in the mammalian host and highlight the complex interplay among the processes of metabolism, development, and pathogenesis.


Assuntos
Cryptococcus neoformans/crescimento & desenvolvimento , Meningoencefalite/genética , Esporos Fúngicos/crescimento & desenvolvimento , Trealose/metabolismo , Adaptação Fisiológica , Animais , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Homeostase/genética , Meningoencefalite/enzimologia , Meningoencefalite/microbiologia , Camundongos , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Trealose/biossíntese , Trealose/genética
9.
Proc Natl Acad Sci U S A ; 111(22): 8215-20, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843160

RESUMO

Pathogen exit is a key stage in the spread and propagation of infectious disease, with the fecal-oral route being a common mode of disease transmission. However, it is poorly understood which molecular pathways provide the major modes for intracellular pathogen exit and fecal-oral transmission in vivo. Here, we use the transparent nematode Caenorhabditis elegans to investigate intestinal cell exit and fecal-oral transmission by the natural intracellular pathogen Nematocida parisii, which is a recently identified species of microsporidia. We show that N. parisii exits from polarized host intestinal cells by co-opting the host vesicle trafficking system and escaping into the lumen. Using a genetic screen, we identified components of the host endocytic recycling pathway that are required for N. parisii spore exit via exocytosis. In particular, we show that the small GTPase RAB-11 localizes to apical spores, is required for spore-containing compartments to fuse with the apical plasma membrane, and is required for spore exit. In addition, we find that RAB-11-deficient animals exhibit impaired contagiousness, supporting an in vivo role for this host trafficking factor in microsporidia disease transmission. Altogether, these findings provide an in vivo example of the major mode of exit used by a natural pathogen for disease spread via fecal-oral transmission.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Exocitose/fisiologia , Microsporídios/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Caenorhabditis elegans/citologia , Compartimento Celular/fisiologia , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Membrana Celular/ultraestrutura , Polaridade Celular/fisiologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Fusão de Membrana/fisiologia , Microscopia Eletrônica de Transmissão , Microsporídios/crescimento & desenvolvimento , Microsporídios/ultraestrutura , Esporos Fúngicos/metabolismo
10.
Curr Opin Microbiol ; 13(4): 437-42, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20570552

RESUMO

Many human fungal pathogens infect people when they are inhaled as spores. Despite the serious impact of fungal spores on human health, little is known about their basic properties or how they interact with the host. This is particularly true for Cryptococcus neoformans, a human fungal pathogen that causes more than 600,000 deaths annually. Spores of C. neoformans have not been well characterized previously because of technical challenges in isolating them; however, recent advances in spore isolation have lead to the first direct analyses of spores. Novel insights into the spore-host interaction, specifically how spores interact with alveolar macrophages, have provided a new model of cryptococcosis that could have broad implications for human fungal pathogenesis.


Assuntos
Criptococose/microbiologia , Cryptococcus neoformans/fisiologia , Pneumopatias Fúngicas/microbiologia , Esporos Fúngicos/fisiologia , Animais , Cryptococcus neoformans/patogenicidade , Interações Hospedeiro-Parasita , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Esporos Fúngicos/patogenicidade , Virulência
11.
Infect Immun ; 77(8): 3491-500, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19451235

RESUMO

Cryptococcus neoformans was first described as a human fungal pathogen more than a century ago. One aspect of the C. neoformans infectious life cycle that has been the subject of earnest debate is whether the spores are pathogenic. Despite much speculation, no direct evidence has been presented to resolve this outstanding question. We present evidence that C. neoformans spores are pathogenic in a mouse intranasal inhalation model of infection. In addition, we provide mechanistic insights into spore-host interactions. We found that C. neoformans spores were phagocytosed by alveolar macrophages via interactions between fungal beta-(1,3)-glucan and the host receptors Dectin-1 and CD11b. Moreover, we discovered an important link between spore survival and macrophage activation state: intracellular spores were susceptible to reactive oxygen-nitrogen species. We anticipate these results will serve as the basis for a model to further investigate the pathogenic implications of infections caused by fungal spores.


Assuntos
Cryptococcus neoformans/patogenicidade , Interações Hospedeiro-Patógeno , Esporos Fúngicos/patogenicidade , Animais , Antígeno CD11b/metabolismo , Feminino , Lectinas Tipo C , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Camundongos Knockout , Viabilidade Microbiana , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/imunologia , Fagocitose , Ligação Proteica , beta-Glucanas/metabolismo
12.
Eukaryot Cell ; 8(4): 595-605, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19181873

RESUMO

Spores are essential particles for the survival of many organisms, both prokaryotic and eukaryotic. Among the eukaryotes, fungi have developed spores with superior resistance and dispersal properties. For the human fungal pathogens, however, relatively little is known about the role that spores play in dispersal and infection. Here we present the purification and characterization of spores from the environmental fungus Cryptococcus neoformans. For the first time, we purified spores to homogeneity and assessed their morphological, stress resistance, and surface properties. We found that spores are morphologically distinct from yeast cells and are covered with a thick spore coat. Spores are also more resistant to environmental stresses than yeast cells and display a spore-specific configuration of polysaccharides on their surfaces. Surprisingly, we found that the surface of the spore reacts with antibodies to the polysaccharide glucuronoxylomannan, the most abundant component of the polysaccharide capsule required for C. neoformans virulence. We explored the role of capsule polysaccharide in spore development by assessing spore formation in a series of acapsular strains and determined that capsule biosynthesis genes are required for proper sexual development and normal spore formation. Our findings suggest that C. neoformans spores may have an adapted cell surface that facilitates persistence in harsh environments and ultimately allows them to infect mammalian hosts.


Assuntos
Cryptococcus neoformans/citologia , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Polissacarídeos/biossíntese , Esporos Fúngicos/citologia , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
13.
J Eukaryot Microbiol ; 53(3): 165-76, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16677338

RESUMO

This study examined the morphogenesis and replication dynamics of the different life stages (cysts, filamentous cells, vegetative cells) of Helicosporidium sp., a non-photosynthetic, entomopathogenic alga. The isolate (SjHe) used originated from an infected black fly larva. Filamentous cell transformation into vegetative cells and autosporulation during vegetative cell replication were observed under controlled in vitro conditions. The transformation process was initiated by a partial swelling of the filamentous cell along with the reorganization of the nuclear material. Two subsequent nuclear and cell divisions resulted in the release of 4 rod-shaped daughter cells, which divided into oval to spherical vegetative cells. These underwent several cycles of autosporogenic cell division. Multiple-passaged vegetative cell cultures formed non-motile, adherent cell clusters (palmelloid colonies). Vegetative replication dynamics were also observed in 2 experimental noctuid hosts, Spodoptera exigua and Helicoverpa zea. The average density of helicosporidial cells produced per microliter hemolymph exceeded cell concentrations obtained in vitro by 15- and 46-fold in S. exigua and H. zea, respectively. Cyst morphogenesis was only observed in the hemolymph, whereas no cysts differentiated at various in vitro conditions.


Assuntos
Clorófitas/crescimento & desenvolvimento , Mariposas/microbiologia , Spodoptera/microbiologia , Animais , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Clorófitas/citologia , Clorófitas/ultraestrutura , Hemolinfa/microbiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Morfogênese , Mariposas/crescimento & desenvolvimento , Fotomicrografia , Simuliidae/microbiologia , Spodoptera/crescimento & desenvolvimento , Esporos/fisiologia , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA