Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nat Commun ; 15(1): 3988, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734682

RESUMO

Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.


Assuntos
Anaplasma , Animais Selvagens , Ehrlichia , Filogenia , Floresta Úmida , Carrapatos , Anaplasma/genética , Anaplasma/isolamento & purificação , Anaplasma/patogenicidade , Anaplasma/classificação , Ehrlichia/genética , Ehrlichia/isolamento & purificação , Ehrlichia/classificação , Humanos , Animais , Carrapatos/microbiologia , Animais Selvagens/microbiologia , Anaplasmose/microbiologia , Anaplasmose/epidemiologia , Anaplasmose/transmissão , Guiana Francesa , Ehrlichiose/microbiologia , Ehrlichiose/epidemiologia , Ehrlichiose/veterinária , Ehrlichiose/transmissão , Metagenômica/métodos , Genoma Bacteriano/genética , RNA Ribossômico 16S/genética
2.
Ecol Evol ; 13(3): e9936, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37006893

RESUMO

Growth in ectotherm vertebrates is strongly rhythmed by seasonal variation in environmental parameters. To track the seasonal variation in ancient times in a continental and tropical context, we aim to develop a method based on the use of the growth rate of fossil ectotherm vertebrates (actinopterygians and chelonians) influenced by seasonal environmental fluctuations they experienced in their lifetime. However, the impact of environmental parameters on growth, positive or negative, and its intensity, depends on the taxa considered, and data are scarce for tropical species. For 1 year, an experiment was conducted to better understand the effect of seasonal variation in environmental parameters (food abundance, temperature, and photoperiod) on the somatic growth rate of three species of tropical freshwater ectotherm vertebrates: the fishes Polypterus senegalus and Auchenoglanis occidentalis and the turtle Pelusios castaneus. Mimicking seasonal shifts expected to be experienced by the animals in the wild, the experiment highlighted the preponderant effect of food abundance on the growth rate of those three species. Water temperature variation had a significant effect on the growth rate of Po. senegalus and Pe. castaneus. Moreover, the photoperiod demonstrated no significant effect on the growth of the three species. The duration of application of starvation or cool water conditions, ranging from 1 to 3 months, did not affect the growth rate of the animals. However, Pelusios castaneus showed a temporary sensitivity to the return of ad libitum feeding or of warm water, after a period of starvation or cool water, by a period of compensatory growth. Finally, this experiment revealed, in the three species, fluctuations in the growth rate under controlled and constant conditions. This variation, similar to the variation in precipitation and temperature observed in their native environment, could be linked to a strong effect of an internal rhythm controlling somatic growth rate.

3.
ISME Commun ; 3(1): 18, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882494

RESUMO

The order Holosporales (Alphaproteobacteria) encompasses obligate intracellular bacterial symbionts of diverse Eukaryotes. These bacteria have highly streamlined genomes and can have negative fitness effects on the host. Herein, we present a comparative analysis of the first genome sequences of 'Ca. Hepatincola porcellionum', a facultative symbiont occurring extracellularly in the midgut glands of terrestrial isopods. Using a combination of long-read and short-read sequencing, we obtained the complete circular genomes of two Hepatincola strains and an additional metagenome-assembled draft genome. Phylogenomic analysis validated its phylogenetic position as an early-branching family-level clade relative to all other established Holosporales families associated with protists. A 16S rRNA gene survey revealed that this new family encompasses diverse bacteria associated with both marine and terrestrial host species, which expands the host range of Holosporales bacteria from protists to several phyla of the Ecdysozoa (Arthropoda and Priapulida). Hepatincola has a highly streamlined genome with reduced metabolic and biosynthetic capacities as well as a large repertoire of transmembrane transporters. This suggests that this symbiont is rather a nutrient scavenger than a nutrient provider for the host, likely benefitting from a nutrient-rich environment to import all necessary metabolites and precursors. Hepatincola further possesses a different set of bacterial secretion systems compared to protist-associated Holosporales, suggesting different host-symbiont interactions depending on the host organism.

4.
Evol Ecol ; 35(2): 165-182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500597

RESUMO

Horizontal transmission between distantly related species has been used to explain how Wolbachia infect multiple species at astonishing rates despite the selection for resistance. Recently, a terrestrial isopod species was found to be infected by an unusual strain of supergroup F Wolbachia. However, only Wolbachia of supergroup B is typically found in isopods. One possibility is that these isopods acquired the infection because of their recurrent contact with termites-a group with strong evidence of infection by supergroup F Wolbachia. Thus, our goals were: (1) check if the infection was an isolated case in isopods, or if it revealed a broader pattern; (2) search for Wolbachia infection in the termites within Brazil; and (3) look for evidence consistent with horizontal transmission between isopods and termites. We collected Neotroponiscus terrestrial isopods and termites along the Brazilian coastal Atlantic forest. We sequenced and identified the Wolbachia strains found in these groups using coxA, dnaA, and fpbA genes. We constructed phylogenies for both bacteria and host taxa and tested for coevolution. We found the supergroup F Wolbachia in other species and populations of Neotroponiscus, and also in Nasutitermes and Procornitermes termites. The phylogenies showed that, despite the phylogenetic distance between isopods and termites, the Wolbachia strains clustered together. Furthermore, cophylogenetic analyses showed significant jumps of Wolbachia between terrestrial isopods and termites. Thus, our study suggests that the horizontal transmission of supergroup F Wolbachia between termites and terrestrial isopods is likely. Our study also helps understanding the success and worldwide distribution of this symbiont. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10682-021-10101-4) contains supplementary material, which is available to authorized users.

5.
Microorganisms ; 9(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440837

RESUMO

The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host's diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the "eco-holobiont" conceptualization of macroorganisms.

6.
Biotechnol Biofuels ; 13: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190114

RESUMO

BACKGROUND: Isopods have colonized all environments, partly thanks to their ability to decompose the organic matter. Their enzymatic repertoire, as well as the one of their associated microbiota, has contributed to their colonization success. Together, these holobionts have evolved several interesting life history traits to degrade the plant cell walls, mainly composed of lignocellulose. It has been shown that terrestrial isopods achieve lignocellulose degradation thanks to numerous and diverse CAZymes provided by both the host and its microbiota. Nevertheless, the strategies for lignocellulose degradation seem more diversified in isopods, in particular in aquatic species which are the least studied. Isopods could be an interesting source of valuable enzymes for biotechnological industries of biomass conversion. RESULTS: To provide new features on the lignocellulose degradation in isopod holobionts, shotgun sequencing of 36 metagenomes of digestive and non-digestive tissues was performed from several populations of four aquatic and terrestrial isopod species. Combined to the 15 metagenomes of an additional species from our previous study, as well as the host transcriptomes, this large dataset allowed us to identify the CAZymes in both the host and the associated microbial communities. Analyses revealed the dominance of Bacteroidetes and Proteobacteria in the five species, covering 36% and 56% of the total bacterial community, respectively. The identification of CAZymes and new enzymatic systems for lignocellulose degradation, such as PULs, cellulosomes and LPMOs, highlights the richness of the strategies used by the isopods and their associated microbiota. CONCLUSIONS: Altogether, our results show that the isopod holobionts are promising models to study lignocellulose degradation. These models can provide new enzymes and relevant lignocellulose-degrading bacteria strains for the biotechnological industries of biomass conversion.

7.
BMC Genomics ; 20(1): 462, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174468

RESUMO

BACKGROUND: Isopods constitute a particular group of crustaceans that has successfully colonized all environments including marine, freshwater and terrestrial habitats. Their ability to use various food sources, especially plant biomass, might be one of the reasons of their successful spread. All isopods, which feed on plants and their by-products, must be capable of lignocellulose degradation. This complex composite is the main component of plants and is therefore an important nutrient source for many living organisms. Its degradation requires a large repertoire of highly specialized Carbohydrate-Active enZymes (called CAZymes) which are produced by the organism itself and in some cases, by its associated microbiota. The acquisition of highly diversified CAZymes could have helped isopods to adapt to their diet and to their environment, especially during land colonization. RESULTS: To test this hypothesis, isopod host CAZomes (i.e. the entire CAZyme repertoire) were characterized in marine, freshwater and terrestrial species through a transcriptomic approach. Many CAZymes were identified in 64 isopod transcriptomes, comprising 27 de novo datasets. Our results show that marine, freshwater and terrestrial isopods exhibit different CAZomes, illustrating different strategies for lignocellulose degradation. The analysis of variations of the size of CAZy families shows these are expanded in terrestrial isopods while they are contracted in aquatic isopods; this pattern is probably resulting from the evolution of the host CAZomes during the terrestrial adaptation of isopods. We show that CAZyme gene duplications and horizontal transfers can be involved in adaptive divergence between isopod CAZomes. CONCLUSIONS: Our characterization of the CAZomes in 64 isopods species provides new insights into the evolutionary processes that enabled isopods to conquer various environments, especially terrestrial ones.


Assuntos
Isópodes/enzimologia , Lignina/metabolismo , Adaptação Fisiológica , Animais , Metabolismo dos Carboidratos/genética , Evolução Molecular , Isópodes/genética , Filogenia , Transcriptoma
8.
Int J Hyg Environ Health ; 222(4): 687-694, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31085113

RESUMO

Opportunistic premise plumbing pathogens present in drinking water are linked to a significant number of infections for health compromised patients. However, their monitoring is not required in current water potability standards and they have been poorly studied in a full-scale network. In this study, we quantified, by qPCR, three opportunistic pathogens, Mycobacterium spp., Legionella pneumophila, Pseudomonas aeruginosa throughout the Paris drinking water network over a one-year sampling campaign. While Mycobacteria spp. seemed ubiquitous whatever the distribution system and the time of the year, the occurrence of L. pneumophila and P. aeruginosa showed seasonal variations. Unlike L. pneumophila and P. aeruginosa, the concentration (copies number/L) of Mycobacterium spp. varied between sampling sites. The variation in microbial numbers did not demonstrate any correlations with temperature, pH, chlorine, conductivity, orthophosphate or nitrate levels. In conclusion, Mycobacterium spp. are common inhabitants of the Paris network while L. pneumophila and P. aeruginosa presence fluctuate over space and time. Such qPCR approach would help to better understand the behaviour of opportunistic premise plumbing pathogens.


Assuntos
Água Potável/microbiologia , Legionella pneumophila/isolamento & purificação , Mycobacterium/isolamento & purificação , Pseudomonas aeruginosa/isolamento & purificação , Engenharia Sanitária , Monitoramento Ambiental , Legionella pneumophila/genética , Mycobacterium/genética , Paris , Pseudomonas aeruginosa/genética
9.
Methods Mol Biol ; 1921: 421-428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694507

RESUMO

The presence of Legionella spp. in natural and man-made water systems is a great public health concern and heavily depends on the presence of free-living amoebae. Taking advantage of the development and affordability of next-generation sequencing technology, we present here a method to characterize the whole bacterial community directly from water samples, as well as from isolated free-living amoebae.


Assuntos
Amoeba/microbiologia , Metagenoma , Metagenômica , Microbiota , Microbiologia da Água , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , RNA Ribossômico 16S
10.
Water Res ; 149: 375-385, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471533

RESUMO

The microbiological water quality of drinking water distribution system (DWDS) is of primary importance for human health. High-throughput sequencing has gained more and more attention in the last decade to describe this microbial diversity in water networks. However, there are few studies describing this approach on large drinking water distribution systems and for extended periods of time. To fill this gap and observe the potential subtle variation in microbiota of a water network through time and space, we aimed to apply high-throughput sequencing of the 16S rRNA gene approach to characterize bacterial communities of the Paris' DWDS over a one-year period. In this study, the Paris network, composed of four different DWDSs, was sampled at 31 sites, each month for one year. The sampling campaign was one of the largest described so far (n = 368) and the importance of key spatio-temporal and physico-chemical parameters was investigated. Overall, 1321 taxa were identified within the Paris network, although only fifteen of them were found in high relative abundance (>1%) in all samples. Two genera, Phreatobacter and Hyphomicrobium were dominant. The whole bacterial diversity was not significantly affected between the four DWDSs (spatial parameter) and by physico-chemical parameters. However, the bacterial diversity was slightly modified over the one-year period (temporal parameter) as we were able to observe DWDS microbiome perturbations, presumably linked to a preceding flood event. Comparison of high-throughput sequencing of the 16S rRNA gene amplicons vs. cultivation-based techniques showed that only 1.8% of bacterial diversity was recovered through cultivation. High throughput sequencing has made it possible to monitor DWDS more accurately than conventional methods by describing the whole diversity and detecting slight fluctuations in bacterial communities. This method would be further used to supervise drinking water networks, to follow any perturbations due to internals events (such as treatments) or external events (such as flooding).


Assuntos
Água Potável , Microbiota , Paris , RNA Ribossômico 16S , Qualidade da Água
11.
Trends Parasitol ; 34(12): 1027-1037, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322750

RESUMO

Bacteria of the order Legionellales, such as Legionella pneumophila, the agent of Legionnaires' disease, and Coxiella burnetii, the agent of Q fever, are widely recognized as human pathogens. While our view of the Legionellales is often limited to clinical isolates, ecological surveys are continually uncovering new members of the Legionellales that do not fall into the recognized pathogenic species. Here we emphasize that most of these Legionellales are nonpathogenic forms that have evolved symbiotic lifestyles with nonvertebrate hosts. The diversity of nonpathogenic forms remains, however, largely underexplored. We conjecture that its characterization, once contrasted with the data on pathogenic species, will reveal novel highlights on the mechanisms underlying lifestyle transitions of intracellular bacteria, including the emergence of pathogenesis and mutualism, transmission routes, and host specificity.


Assuntos
Biodiversidade , Gammaproteobacteria/classificação , Animais , Infecções Bacterianas/microbiologia , Gammaproteobacteria/patogenicidade , Especificidade de Hospedeiro/fisiologia , Humanos , Especificidade da Espécie
12.
Microbiome ; 6(1): 162, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223906

RESUMO

BACKGROUND: Woodlice are recognized as keystone species in terrestrial ecosystems due to their role in the decomposition of organic matter. Thus, they contribute to lignocellulose degradation and nutrient cycling in the environment together with other macroarthropods. Lignocellulose is the main component of plants and is composed of cellulose, lignin and hemicellulose. Its digestion requires the action of multiple Carbohydrate-Active enZymes (called CAZymes), typically acting together as a cocktail with complementary, synergistic activities and modes of action. Some invertebrates express a few endogenous lignocellulose-degrading enzymes but in most species, an efficient degradation and digestion of lignocellulose can only be achieved through mutualistic associations with endosymbionts. Similar to termites, it has been suspected that several bacterial symbionts may be involved in lignocellulose degradation in terrestrial isopods, by completing the CAZyme repertoire of their hosts. RESULTS: To test this hypothesis, host transcriptomic and microbiome shotgun metagenomic datasets were obtained and investigated from the pill bug Armadillidium vulgare. Many genes of bacterial and archaeal origin coding for CAZymes were identified in the metagenomes of several host tissues and the gut content of specimens from both laboratory lineages and a natural population of A. vulgare. Some of them may be involved in the degradation of cellulose, hemicellulose, and lignin. Reconstructing a lignocellulose-degrading microbial community based on the prokaryotic taxa contributing relevant CAZymes revealed two taxonomically distinct but functionally redundant microbial communities depending on host origin. In parallel, endogenous CAZymes were identified from the transcriptome of the host and their expression in digestive tissues was demonstrated by RT-qPCR, demonstrating a complementary enzyme repertoire for lignocellulose degradation from both the host and the microbiome in A. vulgare. CONCLUSIONS: Our results provide new insights into the role of the microbiome in the evolution of terrestrial isopods and their adaptive radiation in terrestrial habitats.


Assuntos
Isópodes/metabolismo , Isópodes/microbiologia , Lignina/metabolismo , Simbiose , Animais , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Isópodes/fisiologia , Filogenia , Solo/parasitologia
13.
Sci Rep ; 8(1): 6998, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725059

RESUMO

Wolbachia are widespread heritable endosymbionts of arthropods notorious for their profound effects on host fitness as well as for providing protection against viruses and eukaryotic parasites, indicating that they can interact with other microorganisms sharing the same host environment. Using the terrestrial isopod crustacean Armadillidium vulgare, its highly diverse microbiota (>200 bacterial genera) and its three feminizing Wolbachia strains (wVulC, wVulM, wVulP) as a model system, the present study demonstrates that Wolbachia can even influence the composition of a diverse bacterial community under both laboratory and natural conditions. While host origin is the major determinant of the taxonomic composition of the microbiota in A. vulgare, Wolbachia infection affected both the presence and, more importantly, the abundance of many bacterial taxa within each host population, possibly due to competitive interactions. Moreover, different Wolbachia strains had different impacts on microbiota composition. As such, infection with wVulC affected a higher number of taxa than infection with wVulM, possibly due to intrinsic differences in virulence and titer between these two strains. In conclusion, this study shows that heritable endosymbionts such as Wolbachia can act as biotic factors shaping the microbiota of arthropods, with as yet unknown consequences on host fitness.


Assuntos
Estruturas Animais/microbiologia , Isópodes/microbiologia , Microbiota , Wolbachia/crescimento & desenvolvimento , Animais , Bactérias/classificação , Bactérias/genética , Metagenômica , Interações Microbianas
14.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28724736

RESUMO

Vertical transmission mode is predicted to decrease the virulence of symbionts. However, Wolbachia, a widespread vertically transmitted endosymbiont, exhibits both negative and beneficial effects on arthropod fitness. This 'Jekyll and Hyde' behaviour, as well as its ability to live transiently outside host cells and to establish new infections via horizontal transmission, may reflect the capacity of Wolbachia to exhibit various phenotypes depending on the prevailing environmental constraints. To study the ability of Wolbachia to readily cope with new constraints, we forced this endosymbiont to spread only via horizontal transmission. To achieve this, we performed serial horizontal transfers of haemolymph from Wolbachia-infected to naive individuals of the isopod Armadillidium vulgare. Across passages, we observed phenotypic changes in the symbiotic relationship: (i) The Wolbachia titre increased in both haemolymph and nerve cord but remained stable in ovaries; (ii) Wolbachia infection was benign at the beginning of the experiment, but highly virulent, killing most hosts after only a few passages. Such a phenotypic shift after recurrent horizontal passages demonstrates that Wolbachia can rapidly change its virulence when facing new environmental constraints. We thoroughly discuss the potential mechanism(s) underlying this phenotypic change, which are likely to be crucial for the ongoing radiation of Wolbachia in arthropods.


Assuntos
Isópodes/microbiologia , Simbiose , Wolbachia/patogenicidade , Animais , Transmissão de Doença Infecciosa , Fenótipo , Virulência , Wolbachia/genética
15.
Sci Rep ; 7: 46270, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393860

RESUMO

Nontuberculous mycobacteria (NTM) are environmental bacteria increasingly associated to public health problems. In water systems, free-living amoebae (FLA) feed on bacteria by phagocytosis, but several bacteria, including many NTM, are resistant to this predation. Thus, FLA can be seen as a training ground for pathogenic bacteria. Mycobacterium llatzerense was previously described as frequently associated with FLA in a drinking water network. The present study aimed to characterize the interactions between M. llatzerense and FLA. M. llatzerense was internalised by phagocytosis and featured lipid inclusions, suggesting a subversion of host resources. Moreover, M. llatzerense survived and even multiplied in presence of A. castellanii. Using a genomic-based comparative approach, twelve genes involved in phagocytosis interference, described in M. tuberculosis, were identified in the M. llatzerense genome sequenced in this study. Transcriptomic analyses showed that ten genes were significantly upregulated during the first hours of the infection, which could partly explain M. llatzerense resistance. Additionally, M. llatzerense was shown to actively inhibit phagosome acidification. In conclusion, M. llatzerense presents a high degree of resistance to phagocytosis, likely explaining its frequent occurrence within FLA in drinking water networks. It underscores that NTM should be carefully monitored in water networks to prevent human health concerns.


Assuntos
Acanthamoeba castellanii/microbiologia , Acanthamoeba castellanii/fisiologia , Interações Hospedeiro-Patógeno , Mycobacterium/imunologia , Fagocitose/imunologia , Acanthamoeba castellanii/ultraestrutura , Técnicas de Cocultura , Humanos , Mycobacterium/ultraestrutura , Fagossomos
16.
Environ Sci Technol ; 51(4): 1988-1997, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28112955

RESUMO

With the ever-increasing volume of polymer wastes and their associated detrimental impacts on the environment, the plastic life cycle has drawn increasing attention. Here, eight commercial polymers selected from biodegradable to environmentally persistent materials, all formulated under a credit card format, were incubated in an outdoor compost to evaluate their fate over time and to profile the microbial communities colonizing their surfaces. After 450 days in compost, the samples were all colonized by multispecies biofilms, these latest displaying different amounts of adhered microbial biomass and significantly distinct bacterial and fungal community compositions depending on the substrate. Interestingly, colonization experiments on the eight polymers revealed a large core of shared microbial taxa, predominantly composed of microorganisms previously reported from environments contaminated with petroleum hydrocarbons or plastics debris. These observations suggest that biofilms may contribute to the alteration process of all the polymers studied. Actually, four substrates, independently of their assignment to a polymer group, displayed a significant deterioration, which might be attributed to biologically mediated mechanisms. Relevantly, the deterioration appears strongly associated with the formation of a high-cell density biofilm onto the polymer surfaces. The analysis of various surface properties revealed that roughness and hydrophilicity are likely prominent parameters for driving the biological interactions with the polymers.


Assuntos
Biofilmes , Polímeros/química , Plásticos , Solo , Propriedades de Superfície
17.
Front Microbiol ; 7: 1484, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713732

RESUMO

Antimicrobial peptides (AMPs) are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, there are currently 15 distinct AMP families published so far in the literature, mainly isolated from members of the Decapoda order. Up to now, armadillidin is the sole non-decapod AMP isolated from the haemocytes of Armadillidium vulgare, a crustacean isopod. Its first description demonstrated that armadillidin is a linear glycine-rich (47%) cationic peptide with an antimicrobial activity directed toward Bacillus megaterium. In the present work, we report identification of armadillidin Q, a variant of armadillidin H (earlier known as armadillidin), from crude haemocyte extracts of A. vulgare using LC-MS approach. We demonstrated that both armadillidins displayed broad spectrum antimicrobial activity against several Gram-positive and Gram-negative bacteria, fungi, but were totally inactive against yeasts. Membrane permeabilization assays, only performed with armadillidin H, showed that the peptide is membrane active against bacterial and fungal strains leading to deep changes in cell morphology. This damaging activity visualized by electronic microscopy correlates with a rapid decrease of cell viability leading to highly blebbed cells. In contrast, armadillidin H does not reveal cytotoxicity toward human erythrocytes. Furthermore, no secondary structure could be defined in this study [by circular dichroism (CD) and nuclear magnetic resonance (NMR)] even in a membrane mimicking environment. Therefore, armadillidins represent interesting candidates to gain insight into the biology of glycine-rich AMPs.

18.
Front Microbiol ; 7: 1472, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721806

RESUMO

Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity, and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host-microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning. Terrestrial isopods comprise a group of crustaceans that have evolved a terrestrial lifestyle and represent keystone species in terrestrial ecosystems, contributing to the decomposition of organic matter and regulating the microbial food web. Since their nutrition is based on plant detritus, it has long been suspected that bacterial symbionts located in the digestive tissues might play an important role in host nutrition via the provisioning of digestive enzymes, thereby enabling the utilization of recalcitrant food compounds (e.g., cellulose or lignins). If this were the case, then (i) the acquisition of these bacteria might have been an important evolutionary prerequisite for the colonization of land by isopods, and (ii) these bacterial symbionts would directly mediate the role of their hosts in ecosystem functioning. Several bacterial symbionts have indeed been discovered in the midgut caeca of terrestrial isopods and some of them might be specific to this group of animals (i.e., Candidatus Hepatoplasma crinochetorum, Candidatus Hepatincola porcellionum, and Rhabdochlamydia porcellionis), while others are well-known intracellular pathogens (Rickettsiella spp.) or reproductive parasites (Wolbachia sp.). Moreover, a recent investigation of the microbiota in Armadillidium vulgare has revealed that this species harbors a highly diverse bacterial community which varies between host populations, suggesting an important share of environmental microbes in the host-associated microbiota. In this review, we synthesize our current knowledge on the terrestrial isopod microbiome and identify future directions to (i) fully understand the functional roles of particular bacteria (both intracellular or intestinal symbionts and environmental gut passengers), and (ii) whether and how the host-associated microbiota could influence the performance of terrestrial isopods as keystone species in soil ecosystems.

19.
Water Res ; 100: 382-392, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27219048

RESUMO

Free-living amoebae (FLA) constitute an important part of eukaryotic populations colonising drinking water networks. However, little is known about the factors influencing their ecology in such environments. Because of their status as reservoir of potentially pathogenic bacteria, understanding environmental factors impacting FLA populations and their associated bacterial community is crucial. Through sampling of a large drinking water network, the diversity of cultivable FLA and their bacterial community were investigated by an amplicon sequencing approach, and their correlation with physicochemical parameters was studied. While FLA ubiquitously colonised the water network all year long, significant changes in population composition were observed. These changes were partially explained by several environmental parameters, namely water origin, temperature, pH and chlorine concentration. The characterisation of FLA associated bacterial community reflected a diverse but rather stable consortium composed of nearly 1400 OTUs. The definition of a core community highlighted the predominance of only few genera, majorly dominated by Pseudomonas and Stenotrophomonas. Co-occurrence analysis also showed significant patterns of FLA-bacteria association, and allowed uncovering potentially new FLA - bacteria interactions. From our knowledge, this study is the first that combines a large sampling scheme with high-throughput identification of FLA together with associated bacteria, along with their influencing environmental parameters. Our results demonstrate the importance of physicochemical parameters in the ecology of FLA and their bacterial community in water networks.


Assuntos
Amoeba , Água Potável/microbiologia , Bactérias , Ecologia , Eucariotos
20.
FEMS Microbiol Ecol ; 92(5): fiw063, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27004796

RESUMO

We present the first in-depth investigation of the host-associated microbiota of the terrestrial isopod crustacean Armadillidium vulgare. This species is an important decomposer of organic matter in terrestrial ecosystems and a major model organism for arthropod-Wolbachia symbioses due to its well-characterized association with feminizing Wolbachia 16S rRNA gene pyrotags were used to characterize its bacterial microbiota at multiple levels: (i) in individuals from laboratory lineages and field populations and (ii) in various host tissues. This integrative approach allowed us to reveal an unexpectedly high bacterial diversity, placing this species in the same league as termites in terms of symbiotic diversity. Interestingly, both animal groups belong to the same ecological guild in terrestrial ecosystems. While Wolbachia represented the predominant taxon in infected individuals, it was not the only major player. Together, the most abundant taxa represented a large scope of symbiotic interactions, including bacterial pathogens, a reproductive parasite (Wolbachia) and potential nutritional symbionts. Furthermore, we demonstrate that individuals from different populations harboured distinct bacterial communities, indicating a strong link between the host-associated microbiota and environmental bacteria, possibly due to terrestrial isopod nutritional ecology. Overall, this work highlights the need for more studies of host-microbiota interactions and bacterial diversity in non-insect arthropods.


Assuntos
Bactérias/classificação , Isópodes/microbiologia , Microbiologia do Solo , Wolbachia/isolamento & purificação , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Isópodes/fisiologia , Microbiota , RNA Ribossômico 16S/genética , Simbiose , Wolbachia/genética , Wolbachia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA