Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Sci Nutr ; 9(5): 2446-2457, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026062

RESUMO

The health-promoting effects of whole-grain consumption have been attributed in a large part to the phytochemical profile of the wheat grain, and particularly to the bioactive molecules present in bran. This study shed light on the impact of human practices, especially harvesting sites (terroirs) and wheat species and varieties, as well as bread-making conditions on the variation of the antioxidant and antimicrobial ferulic acid (FA) content. FA concentration in the bran of wheat species (durum and bread wheat) and varieties (Chevalier, Renan, Redon, Saint Priest le vernois rouge, Bladette de Provence, Pireneo, Rouge de Bordeaux, LA1823, Claudio et Bidi17) harvested in five sites in France on 2015 and 2017, has been evaluated. Statistical analysis showed significant differences in FA content for wheat varieties and terroirs. During bread making, baking and type of leaven impacted the FA content of dough and bread. The differences were not due to the type of fermentation (sourdough/commercial yeast) but rather to the diversity of fermenting microbial strains and flour used for backslopping.

2.
Food Microbiol ; 98: 103790, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875218

RESUMO

The metabolism of ferulic acid (FA) was studied during fermentation with different species and strains of lactic acid bacteria (LAB) and yeasts, in synthetic sourdough medium. Yeast strains of Kazachstania humilis, Kazachstania bulderi, and Saccharomyces cerevisiae, as well as lactic acid bacteria strains of Fructilactobacillus sanfranciscensis, Lactiplantibacillus plantarum, Lactiplantibacillus xiangfangensis, Levilactobacillus hammesii, Latilactobacillus curvatus and Latilactobacillus sakei were selected from French natural sourdoughs. Fermentation in presence or absence of FA was carried out in LAB and yeasts monocultures, as well as in LAB/yeast co-cultures. Our results indicated that FA was mainly metabolized into 4-vinylguaiacol (4-VG) by S. cerevisiae strains, and into dihydroferulic acid (DHFA) and 4-VG in the case of LAB. Interactions of LAB and yeasts led to the modification of FA metabolism, with a major formation of DHFA, even by the strains that do not produce it in monoculture. Interestingly, FA was almost completely consumed by the F. sanfranciscensis bFs17 and K. humilis yKh17 pair and converted into DHFA in 89.5 ± 19.6% yield, while neither bFs17, nor yKh17 strains assimilated FA in monoculture.


Assuntos
Pão/análise , Ácidos Cumáricos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Triticum/microbiologia , Pão/microbiologia , Ácidos Cumáricos/análise , Fermentação , Farinha/análise , Farinha/microbiologia , Microbiologia de Alimentos , Saccharomycetales/química , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA