Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Commun ; 14(1): 5170, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620306

RESUMO

Antibodies play a critical role in protection against influenza; yet titers and viral neutralization represent incomplete correlates of immunity. Instead, the ability of antibodies to leverage the antiviral power of the innate immune system has been implicated in protection from and clearance of influenza infection. Here, post-hoc analysis of the humoral immune response to influenza is comprehensively profiled in a cohort of vaccinated older adults (65 + ) monitored for influenza infection during the 2012/2013 season in the United States (NCT: 01427309). While robust humoral immune responses arose against the vaccine and circulating strains, influenza-specific antibody effector profiles differed in individuals that later became infected with influenza, who are deficient in NK cell activating antibodies to both hemagglutinin and neuraminidase, compared to individuals who remained uninfected. Furthermore, NK cell activation was strongly associated with the NK cell senescence marker CD57, arguing for the need for selective induction of influenza-specific afucosylated NK activating antibodies in older adults to achieve protection. High dose vaccination, currently used for older adults, was insufficient to generate this NK cell-activating humoral response. Next generation vaccines able to selectively bolster NK cell activating antibodies may be required to achieve protection in the setting of progressively senescent NK cells.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Idoso , Influenza Humana/prevenção & controle , Imunidade Humoral , Anticorpos Antivirais , Células Matadoras Naturais
2.
Cell Rep Med ; 4(3): 100975, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36921600

RESUMO

Under the ever-present threat of a pandemic influenza strain, the evolution of a broadly reactive, neutralizing, functional, humoral immune response may hold the key to protection against both circulating and emerging influenza strains. We apply a systems approach to profile hemagglutinin- and neuraminidase-specific humoral signatures that track with the evolution of broad immunity in a cohort of vaccinated individuals and validate these findings in a second longitudinal cohort. Multivariate analysis reveals the presence of a unique pre-existing Fcγ-receptor-binding antibody profile in individuals that evolved broadly reactive hemagglutination inhibition activity (HAI), marked by the presence of elevated levels of pre-existing FCGR2B-binding antibodies. Moreover, vaccination with FCGR2B-binding antibody-opsonized influenza results in enhanced antibody titers and HAI activity in a murine model. Together, these data suggest that pre-existing FCGR2B binding antibodies are a key correlate of the evolution of broadly protective influenza-specific antibodies, providing insight for the design of next-generation influenza vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Influenza Humana/prevenção & controle , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Anticorpos Antivirais , Vacinação
3.
iScience ; 25(4): 104088, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35402869

RESUMO

Pregnancy represents a unique tolerogenic immune state which may alter susceptibility to infection and vaccine response. Here, we characterized humoral immunity to seasonal influenza vaccine strains in pregnant and non-pregnant women. Although serological responses to influenza remained largely intact during late pregnancy, distinct modifications were observed. Pregnant women had reduced hemagglutinin subtype-1 (H1)- IgG, IgG1, IgG2, and IgG3, hemagglutination inhibition, and group 1 and 2 stem IgG titers. Intriguingly, H1-specific avidity and FcγR1 binding increased, and influenza antibodies had distinct Fc and Fab glycans characterized by increased di-galactosylation and di-sialylation. H1-specific Fc-functionality (i.e. monocyte phagocytosis and complement deposition) was moderately reduced in pregnancy. Multivariate antibody analysis revealed two distinct populations (pregnant vs. non-pregnant) segregated by H1 FcγR1 binding, H1-IgG levels, and Fab and Fc glycosylation. Our results demonstrated a structural and functional modulation of influenza humoral immunity during pregnancy that was antigen-specific and consistent with reduced inflammation and efficient placental transport.

4.
Cell Rep ; 38(6): 110337, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139373

RESUMO

Influenza is an important cause of illness and morbidity for infants. Seasonal influenza vaccination during pregnancy aims to provide protection to mothers, but it can also provide immunity to infants. The precise influence of maternal vaccination on immunity in infants and how vaccine-elicited antibodies provide protection in some but not all infants is incompletely understood. We comprehensively profiled the transfer of functional antibodies and defined humoral factors contributing to immunity against influenza in a clinical trial of maternal influenza vaccination. Influenza-specific antibody subclass levels, Fc ɣ receptor (FCGR) binding levels, and antibody-dependent innate immune functions were all profiled in the mothers during pregnancy and at birth, as well as in cord blood. Vaccination increased influenza-specific antibody levels, antibody binding to FCGR, and specific antibody-dependent innate immune functions in both maternal and cord blood, with FCGR binding most enhanced via vaccination. Influenza-specific FCGR binding levels were lower in cord blood of infants who subsequently developed influenza infection. Collectively these data suggest that in addition to increased antibody amounts, the selective transfer of FCGR-binding antibodies contributes to the protective immune response in infants against influenza.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Vacinação , Feminino , Humanos , Lactente , Recém-Nascido , Influenza Humana/prevenção & controle , Placebos , Gravidez , Vacinação/métodos
5.
Front Immunol ; 11: 1744, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849622

RESUMO

Increasing evidence points to a role for antibody-mediated effector functions in preventing and controlling HIV infection. However, less is known about how these antibody effector functions evolve following infection. Moreover, how the humoral immune response is naturally tuned to recruit the antiviral activity of the innate immune system, and the extent to which these functions aid in the control of infection, are poorly understood. Using plasma samples from 10 hyper-acute HIV-infected South African women, identified in Fiebig stage I (the FRESH cohort), systems serology was performed to evaluate the functional and biophysical properties of gp120-, gp41-, and p24- specific antibody responses during the first year of infection. Significant changes were observed in both the functional and biophysical characteristics of the humoral immune response following acute HIV infection. Antibody Fc-functionality increased over the course of infection, with increases in antibody-mediated phagocytosis, NK activation, and complement deposition occurring in an antigen-specific manner. Changes in both antibody subclass and antibody Fc-glycosylation drove the evolution of antibody effector activity, highlighting natural modifications in the humoral immune response that may enable the directed recruitment of the innate immune system to target and control HIV. Moreover, enhanced antibody functionality, particularly gp120-specific polyfunctionality, was tied to improvements in clinical course of infection, supporting a role for functional antibodies in viral control.


Assuntos
Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , HIV/imunologia , Imunidade Humoral , Especificidade de Anticorpos , Biomarcadores/sangue , Proteínas do Sistema Complemento/imunologia , Feminino , Glicosilação , HIV/patogenicidade , Proteína do Núcleo p24 do HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Ativação Linfocitária , Monócitos/imunologia , Monócitos/virologia , Fagocitose , Prognóstico , Processamento de Proteína Pós-Traducional , Células THP-1 , Fatores de Tempo
6.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32554928

RESUMO

The RV144 HIV-1 vaccine trial results showed moderate reduction in viral infections among vaccinees as well as induction of antibody-dependent cellular cytotoxicity and vaccine-specific IgG and IgG3 responses directed at variable loop regions 1 and 2 of the HIV envelope protein. However, with the recent failure of the HVTN 702 clinical trial, comprehensive profiling of humoral immune responses may provide insight for these disappointing results. One of the changes included in the HVTN 702 study was the addition of a late boost, aimed at augmenting peak immunity and durability. The companion vaccine trial RV305 was designed to permit the evaluation of the immunologic impact of late boosting with either the boosting protein antigen alone, the canarypox viral vector ALVAC alone, or a combination of both. Although previous data showed elevated levels of IgG antibodies in both boosting arms, regardless of ALVAC-HIV vector incorporation, the effect on shaping antibody effector function remains unclear. Thus, here we analyzed the antibody and functional profile induced by RV305 boosting regimens and found that although IgG1 levels increased in both arms that included protein boosting, IgG3 levels were reduced compared with the original RV144 vaccine strategy. Most functional responses increased upon protein boosting, regardless of the viral vector-priming agent incorporation. These data suggest that the addition of a late protein boost alone is sufficient to increase functionally potent vaccine-specific antibodies previously associated with reduced risk of infection with HIV.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos HIV/imunologia , Infecções por HIV/imunologia , Humanos , Imunidade Humoral/imunologia , Imunização Secundária/métodos
7.
J Clin Invest ; 130(2): 662-672, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31845904

RESUMO

Seasonal and pandemic influenza infection remains a major public health concern worldwide. Driving robust humoral immunity has been a challenge given preexisting, often cross-reactive, immunity and in particular, poorly immunogenic avian antigens. To overcome immune barriers, the adjuvant MF59 has been used in seasonal influenza vaccines to increase antibody titers and improve neutralizing activity, translating to a moderate increase in protection in vulnerable populations. However, its effects on stimulating antibody effector functions, including NK cell activation, monocyte phagocytosis, and complement activity, all of which have been implicated in protection against influenza, have yet to be defined. Using systems serology, we assessed changes in antibody functional profiles in individuals who received H5N1 avian influenza vaccine administered with MF59, with alum, or delivered unadjuvanted. MF59 elicited antibody responses that stimulated robust neutrophil phagocytosis and complement activity. Conversely, vaccination with MF59 recruited NK cells poorly and drove moderate monocyte phagocytic activity, both likely compromised because of the induction of antibodies that did not bind FCGR3A. Collectively, defining the humoral antibody functions induced by distinct adjuvants may provide a path to designing next-generation vaccines that can selectively leverage the humoral immune functions, beyond binding and neutralization, resulting in better protection from infection.


Assuntos
Anticorpos Antivirais/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza , Polissorbatos , Esqualeno , Vacinação , Adolescente , Adulto , Proteínas do Sistema Complemento/imunologia , Feminino , Humanos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Neutrófilos/imunologia , Fagocitose/efeitos dos fármacos , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem , Esqualeno/imunologia , Células THP-1
8.
Cell ; 178(1): 202-215.e14, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31204102

RESUMO

Despite the worldwide success of vaccination, newborns remain vulnerable to infections. While neonatal vaccination has been hampered by maternal antibody-mediated dampening of immune responses, enhanced regulatory and tolerogenic mechanisms, and immune system immaturity, maternal pre-natal immunization aims to boost neonatal immunity via antibody transfer to the fetus. However, emerging data suggest that antibodies are not transferred equally across the placenta. To understand this, we used systems serology to define Fc features associated with antibody transfer. The Fc-profile of neonatal and maternal antibodies differed, skewed toward natural killer (NK) cell-activating antibodies. This selective transfer was linked to digalactosylated Fc-glycans that selectively bind FcRn and FCGR3A, resulting in transfer of antibodies able to efficiently leverage innate immune cells present at birth. Given emerging data that vaccination may direct antibody glycosylation, our study provides insights for the development of next-generation maternal vaccines designed to elicit antibodies that will most effectively aid neonates.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/metabolismo , Placenta/metabolismo , Polissacarídeos/metabolismo , Receptores Fc/imunologia , Receptores Fc/metabolismo , Adolescente , Adulto , Bélgica , Degranulação Celular , Estudos de Coortes , Feminino , Glicosilação , Humanos , Recém-Nascido , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Masculino , Gravidez , Receptores de IgG/metabolismo , Células THP-1 , Estados Unidos , Vacinação , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 116(27): 13474-13479, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213541

RESUMO

A major obstacle to vaccination against antigenically variable viruses is skewing of antibody responses to variable immunodominant epitopes. For influenza virus hemagglutinin (HA), the immunodominance of the variable head impairs responses to the highly conserved stem. Here, we show that head immunodominance depends on the physical attachment of head to stem. Stem immunogenicity is enhanced by immunizing with stem-only constructs or by increasing local HA concentration in the draining lymph node. Surprisingly, coimmunization of full-length HA and stem alters stem-antibody class switching. Our findings delineate strategies for overcoming immunodominance, with important implications for human vaccination.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Hemaglutininas/imunologia , Epitopos Imunodominantes/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Células-Tronco/imunologia
10.
Front Immunol ; 10: 440, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949165

RESUMO

While neutralizing antibody titers measured by hemagglutination inhibition have been proposed as a correlate of protection following influenza vaccination, neutralization alone is a modest predictor of protection against seasonal influenza. Instead, emerging data point to a critical role for additional extra-neutralizing functions of antibodies in protection from infection. Specifically, beyond binding and neutralization, antibodies mediate a variety of additional immune functions via their ability to recruit and deploy innate immune effector function. Along these lines, antibody-dependent cellular cytotoxicity, antibody-mediated macrophage phagocytosis and activation, antibody-driven neutrophil activation, antibody-dependent complement deposition, and non-classical Fc-receptor antibody trafficking have all been implicated in protection from influenza infection. However, the precise mechanism(s) by which the immune system actively tunes antibody functionality to drive protective immunity has been poorly characterized. Here we review the data related to Fc-effector functional protection from influenza and discuss prospects to leverage this humoral immune activity for the development of a universal influenza vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Orthomyxoviridae/imunologia , Receptores Fc/imunologia , Adjuvantes Imunológicos , Citotoxicidade Celular Dependente de Anticorpos , Ativação do Complemento/imunologia , Epitopos/imunologia , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunidade Inata , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Isotipos de Imunoglobulinas/imunologia , Influenza Humana/imunologia , Células Matadoras Naturais/imunologia , Ativação de Macrófagos/imunologia , Modelos Moleculares , Neuraminidase/imunologia , Ativação de Neutrófilo/imunologia , Fagocitose , Processamento de Proteína Pós-Traducional
11.
Semin Immunopathol ; 41(2): 239-249, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30547182

RESUMO

Vaccines are among the most impactful public health interventions, preventing millions of new infections and deaths annually worldwide. However, emerging data suggest that vaccines may not protect all populations equally. Specifically, studies analyzing variation in vaccine-induced immunity have pointed to the critical impact of genetics, the environment, nutrition, the microbiome, and sex in influencing vaccine responsiveness. The significant contribution of sex to modulating vaccine-induced immunity has gained attention over the last years. Specifically, females typically develop higher antibody responses and experience more adverse events following vaccination than males. This enhanced immune reactogenicity among females is thought to render females more resistant to infectious diseases, but conversely also contribute to higher incidence of autoimmunity among women. Dissection of mechanisms which underlie sex differences in vaccine-induced immunity has implicated hormonal, genetic, and microbiota differences across males and females. This review will highlight the importance of sex-dependent differences in vaccine-induced immunity and specifically will address the role of sex as a modulator of humoral immunity, key to long-term pathogen-specific protection.


Assuntos
Formação de Anticorpos , Imunidade Humoral , Microbiota/imunologia , Caracteres Sexuais , Vacinação , Vacinas , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/genética , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/etiologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Feminino , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/genética , Incidência , Controle de Infecções , Infecções/epidemiologia , Infecções/genética , Infecções/imunologia , Masculino , Vacinas/imunologia , Vacinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA