Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sci Transl Med ; 16(739): eabn8529, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507466

RESUMO

Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.


Assuntos
Distrofia Muscular de Duchenne , Nicho de Células-Tronco , Camundongos , Animais , Apelina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Transdução de Sinais
2.
Antiviral Res ; 225: 105869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548023

RESUMO

SARS-CoV-2 Omicron subvariants with increased transmissibility and immune evasion are spreading globally with alarming persistence. Whether the mutations and evolution of spike (S) Omicron subvariants alter the viral hijacking of human TMPRSS2 for viral entry remains to be elucidated. This is particularly important to investigate because of the large number and diversity of mutations of S Omicron subvariants reported since the emergence of BA.1. Here we report that human TMPRSS2 is a molecular determinant of viral entry for all the Omicron clinical isolates tested in human lung cells, including ancestral Omicron subvariants (BA.1, BA.2, BA.5), contemporary Omicron subvariants (BQ.1.1, XBB.1.5, EG.5.1) and currently circulating Omicron BA.2.86. First, we used a co-transfection assay to demonstrate the endoproteolytic cleavage by TMPRSS2 of spike Omicron subvariants. Second, we found that N-0385, a highly potent TMPRSS2 inhibitor, is a robust entry inhibitor of virus-like particles harbouring the S protein of Omicron subvariants. Third, we show that N-0385 exhibits nanomolar broad-spectrum antiviral activity against live Omicron subvariants in human Calu-3 lung cells and primary patient-derived bronchial epithelial cells. Interestingly, we found that N-0385 is 10-20 times more potent than the repositioned TMPRSS2 inhibitor, camostat, against BA.5, EG.5.1, and BA.2.86. We further found that N-0385 shows broad synergistic activity with clinically approved direct-acting antivirals (DAAs), i.e., remdesivir and nirmatrelvir, against Omicron subvariants, demonstrating the potential therapeutic benefits of a multi-targeted treatment based on N-0385 and DAAs.


Assuntos
Benzotiazóis , COVID-19 , Hepatite C Crônica , Sulfonamidas , Humanos , Antivirais , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Serina Endopeptidases
3.
J Med Chem ; 67(5): 3711-3726, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417040

RESUMO

Macrocycles have recognized therapeutic potential, but their limited cellular permeability can hinder their development as oral drugs. To better understand the structure-permeability relationship of heterocycle-containing, semipeptidic macrocycles, a library was synthesized. These compounds were created by developing two novel reactions described herein: the reduction of activated oximes by LiBH4 and the aqueous reductive mono-N-alkylation of aldehydes using catalytic SmI2 and stoichiometric Zn. The permeability of the macrocycles was evaluated through a parallel artificial membrane permeability assay (PAMPA), and the results indicated that macrocycles with a furan incorporated into the structure have better passive permeability than those with a pyrrole moiety. Compounds bearing a 2,5-disubstituted pyrrole (endo orientation) were shown to be implicated in intramolecular H-bonds, enhancing their permeability. This study highlighted the impact of heterocycles moieties in semipeptides, creating highly permeable macrocycles, thus showing promising avenues for passive diffusion of drugs beyond the rule-of-five chemical space.


Assuntos
Membranas Artificiais , Água , Permeabilidade , Permeabilidade da Membrana Celular , Difusão
4.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257256

RESUMO

Tomatidine (TO) is a natural narrow-spectrum antibiotic acting on the Staphylococcus aureus small colony variant (SCV) with a minimal inhibitory concentration (MIC) of 0.06 µg/mL while it shows no activity against prototypical strains (MIC > 128 µg/mL). To expand the spectrum of activity of TO, the 3ß-hydroxyl group was substituted with an ethane-1,2-diamine, resulting in two diastereoisomers, TM-02 (C3-ß) and TM-03 (C3-α). These molecules are equally potent against prototypical S. aureus and E. coli strains (MIC 8 and 32 µg/mL, respectively), whereas TM-02 is more potent against SCV (MIC 0.5 µg/mL) and hyperpermeable E. coli strains (MIC 1 µg/mL). The differences in their modes of action were investigated. We used membrane vesicles to confirm the inhibition of the bacterial ATP synthase, the documented target of TO, and measured effects on bacterial cell membranes. Both molecules inhibited E. coli ATP synthase, with Ki values of 1.1 µM and 3.5 µM for TM-02 and TM-03, respectively, and the bactericidal effect of TM-02 was linked to ATP synthase inhibition. Furthermore, TM-02 had no major effect on the membrane fluidity and gradually reduced membrane potential. In contrast, TM-03 caused structural damages to membranes and completely disrupted the membrane potential (>90%). We were successful in broadening the spectrum of activity of TO. C3-ß-diastereoisomers may have more specific antibacterial action than C3-α.


Assuntos
Escherichia coli , Staphylococcus aureus , Tomatina/análogos & derivados , Antibacterianos/farmacologia , Trifosfato de Adenosina
5.
ChemMedChem ; 19(2): e202300458, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37864572

RESUMO

Human influenza viruses cause acute respiratory symptoms that can lead to death. Due to the emergence of antiviral drug-resistant strains, there is an urgent requirement for novel antiviral agents and innovative therapeutic strategies. Using the peptidomimetic ketobenzothiazole protease inhibitor RQAR-Kbt (IN-1, aka N-0100) as a starting point, we report how substituting P2 and P4 positions with natural and unnatural amino acids can modulate the inhibition potency toward matriptase, a prototypical type II transmembrane serine protease (TTSP) that acts as a priming protease for influenza viruses. We also introduced modifications of the peptidomimetics N-terminal groups, leading to significant improvements (from µM to nM, 60 times more potent than IN-1) in their ability to inhibit the replication of influenza H1N1 virus in the Calu-3 cell line derived from human lungs. The selectivity towards other proteases has been evaluated and explained using molecular modeling with a crystal structure recently obtained by our group. By targeting host cell TTSPs as a therapeutic approach, it may be possible to overcome the high mutational rate of influenza viruses and consequently prevent potential drug resistance.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Inibidores de Serina Proteinase/farmacologia , Vírus da Influenza A/fisiologia , Serina Proteases/metabolismo , Influenza Humana/tratamento farmacológico , Inibidores de Proteases/farmacologia , Replicação Viral
6.
Inorg Chem ; 62(49): 19821-19837, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988596

RESUMO

Two complementary procedures are presented to prepare cis-pyridyl-iridium(III) emitters of the class [3b+3b+3b'] with two orthometalated ligands of the 2-phenylpyridine type (3b) and a third ligand (3b'). They allowed to obtain four emitters of this class and to compare their properties with those of the trans-pyridyl isomers. The finding starts from IrH5(PiPr3)2, which reacts with 2-(p-tolyl)pyridine to give fac-[Ir{κ2-C,N-[C6MeH3-py]}3] with an almost quantitative yield. Stirring the latter in the appropriate amount of a saturated solution of HCl in toluene results in the cis-pyridyl adduct IrCl{κ2-C,N-[C6MeH3-py]}2{κ1-Cl-[Cl-H-py-C6MeH4]} stabilized with p-tolylpyridinium chloride, which can also be transformed into dimer cis-[Ir(µ-OH){κ2-C,N-[C6MeH3-py]}2]2. Adduct IrCl{κ2-C,N-[C6MeH3-py]}2{κ1-Cl-[Cl-H-py-C6MeH4]} directly generates cis-[Ir{κ2-C,N-[C6MeH3-py]}2{κ2-C,N-[C6H4-Isoqui]}] and cis-[Ir{κ2-C,N-[C6MeH3-py]}2{κ2-C,N-[C6H4-py]}] by transmetalation from Li[2-(isoquinolin-1-yl)-C6H4] and Li[py-2-C6H4]. Dimer cis-[Ir(µ-OH){κ2-C,N-[C6MeH3-py]}2]2 is also a useful starting complex when the precursor molecule of 3b' has a fairly acidic hydrogen atom, suitable for removal by hydroxide groups. Thus, its reactions with 2-picolinic acid and acetylacetone (Hacac) lead to cis-Ir{κ2-C,N-[C6MeH3-py]}2{κ2-O,N-[OC(O)-py]} and cis-Ir{κ2-C,N-[C6MeH3-py]}2{κ2-O,O-[acac]}. The stereochemistry of the emitter does not significantly influence the emission wavelengths. On the contrary, its efficiency is highly dependent on and associated with the stability of the isomer. The more stable isomer shows a higher quantum yield and color purity.

7.
Eur J Med Chem ; 262: 115886, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924710

RESUMO

Antibiotic resistance is escalating alarmingly worldwide. Bacterial resistance mechanisms are surfacing and proliferating across the globe, jeopardizing our capacity to manage prevalent infectious illnesses. Without drastic measures, we risk entering a post-antibiotic era, where even trivial infections and injuries can cause death again. In this context, we have developed a new class of antibiotics based on tomatidine (TO), a natural product derived from tomato plants, with a novel mode of action by targeting bacterial ATP synthases. The first generation of compounds proved highly specific for small-colony variants (SCVs) of Staphylococcus aureus. However, optimization of this scaffold through extensive structure-activity relationship studies has enabled us to broaden its effectiveness to include both Gram-positive and Gram-negative bacteria. Notably, the results showed that specific C3-modification of TO could improve ATP synthase inhibition and also bypass the outer membrane barrier of Gram-negative bacteria to gain substantial growth inhibition including against multi-resistant strains.


Assuntos
Antibacterianos , Jardins , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Trifosfato de Adenosina
8.
Antibiotics (Basel) ; 12(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627764

RESUMO

Staphylococcus aureus is one of the major pathogens causing bovine mastitis, and antibiotic treatment is most often inefficient due to its virulence and antibiotic-resistance attributes. The development of new antibiotics for veterinary use should account for the One Health concept, in which humans, animals, and environmental wellbeing are all interconnected. S. aureus can infect cattle and humans alike and antibiotic resistance can impact both if the same classes of antibiotics are used. New effective antibiotic classes against S. aureus are thus needed in dairy farms. We previously described PC1 as a novel antibiotic, which binds the S. aureus guanine riboswitch and interrupts transcription of essential GMP synthesis genes. However, chemical instability of PC1 hindered its development, evaluation, and commercialization. Novel PC1 analogs with improved stability have now been rationally designed and synthesized, and their in vitro and in vivo activities have been evaluated. One of these novel compounds, PC206, remains stable in solution and demonstrates specific narrow-spectrum activity against S. aureus. It is active against biofilm-embedded S. aureus, its cytotoxicity profile is adequate, and in vivo tests in mice and cows show that it is effective and well tolerated. PC206 and structural analogs represent a promising new antibiotic class to treat S. aureus-induced bovine mastitis.

9.
Front Cardiovasc Med ; 10: 1191891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636297

RESUMO

Introduction: Peripheral arterial disease (PAD) is a major risk factor for lower-extremity amputation in diabetic patients. Unfortunately, previous clinical studies investigating therapeutic angiogenesis using the vascular endothelial growth factor (VEGF) have shown disappointing results in diabetic patients, which evokes the necessity for novel therapeutic agents. The apelinergic system (APJ receptor/apelin) is highly upregulated under hypoxic condition and acts as an activator of angiogenesis. Apelin treatment improves revascularization in nondiabetic models of ischemia, however, its role on angiogenesis in diabetic conditions remains poorly investigated. This study explored the impact of Pyr-apelin-13 in endothelial cell function and diabetic mouse model of hindlimb ischemia. Methods: Nondiabetic and diabetic mice underwent femoral artery ligation to induce limb ischemia. Diabetic mice were implanted subcutaneously with osmotic pumps delivering Pyr-apelin-13 for 28 days. Blood flow reperfusion was measured for 4 weeks post-surgery and exercise willingness was assessed with voluntary wheels. In vitro, bovine aortic endothelial cells (BAECs) were exposed to normal (NG) or high glucose (HG) levels and hypoxia. Cell migration, proliferation and tube formation assays were performed following either VEGF or Pyr-apelin-13 stimulation. Results and Discussion: Following limb ischemia, blood flow reperfusion, functional recovery of the limb and vascular density were improved in diabetic mice receiving Pyr-apelin-13 compared to untreated diabetic mice. In cultured BAECs, exposure to HG concentrations and hypoxia reduced VEGF proangiogenic actions, whereas apelin proangiogenic effects remained unaltered. Pyr-apelin-13 induced its proangiogenic actions through Akt/AMPK/eNOS and RhoA/ROCK signaling pathways under both NG or HG concentrations and hypoxia exposure. Our results identified the apelinergic system as a potential therapeutic target for angiogenic therapy in diabetic patients with PAD.

10.
Emerg Microbes Infect ; 12(2): 2246594, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555275

RESUMO

Antivirals with broad coronavirus activity are important for treating high-risk individuals exposed to the constantly evolving SARS-CoV-2 variants of concern (VOCs) as well as emerging drug-resistant variants. We developed and characterized a novel class of active-site-directed 3-chymotrypsin-like protease (3CLpro) inhibitors (C2-C5a). Our lead direct-acting antiviral (DAA), C5a, is a non-covalent, non-peptide with a dissociation constant of 170 nM against recombinant SARS-CoV-2 3CLpro. The compounds C2-C5a exhibit broad-spectrum activity against Omicron subvariants (BA.5, BQ.1.1, and XBB.1.5) and seasonal human coronavirus-229E infection in human cells. Notably, C5a has median effective concentrations of 30-50 nM against BQ.1.1 and XBB.1.5 in two different human cell lines. X-ray crystallography has confirmed the unique binding modes of C2-C5a to the 3CLpro, which can limit virus cross-resistance to emerging Paxlovid-resistant variants. We tested the effect of C5a with two of our newly discovered host-directed antivirals (HDAs): N-0385, a TMPRSS2 inhibitor, and bafilomycin D (BafD), a human vacuolar H+-ATPase [V-ATPase] inhibitor. We demonstrated a synergistic action of C5a in combination with N-0385 and BafD against Omicron BA.5 infection in human Calu-3 lung cells. Our findings underscore that a SARS-CoV-2 multi-targeted treatment for circulating Omicron subvariants based on DAAs (C5a) and HDAs (N-0385 or BafD) can lead to therapeutic benefits by enhancing treatment efficacy. Furthermore, the high-resolution structures of SARS-CoV-2 3CLpro in complex with C2-C5a will facilitate future rational optimization of our novel broad-spectrum active-site-directed 3C-like protease inhibitors.


Assuntos
COVID-19 , Hepatite C Crônica , Humanos , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , SARS-CoV-2
11.
Biochim Biophys Acta Biomembr ; 1865(7): 184196, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37400050

RESUMO

Compounds beyond the rule-of-five are generating interest as they expand the molecular toolbox for modulating targets previously considered "undruggable". Macrocyclic peptides are an efficient class of molecules for modulating protein-protein interactions. However, predicting their permeability is difficult as they differ from small molecules. Although constrained by macrocyclization, they generally retain some conformational flexibility associated with an enhanced ability to cross biological membranes. In this study, we investigated the relationship between the structure of semi-peptidic macrocycles and their membrane permeability through structural modifications. Based on a scaffold of four amino acids and a linker, we synthesized 56 macrocycles incorporating modifications in either stereochemistry, N-methylation, or lipophilicity and assessed their passive permeability using the parallel artificial membrane permeability assay (PAMPA). Our results show that some semi-peptidic macrocycles have adequate passive permeability even with properties outside the Lipinski rule of five. We found that N-methylation in position 2 and the addition of lipophilic groups to the side chain of tyrosine led to an improvement in permeability with a decrease in tPSA and 3D-PSA. This enhancement could be attributed to the shielding effect of the lipophilic group on some regions of the macrocycle, which in turn, facilitates a favorable macrocycle conformation for permeability, suggesting some degree of chameleonic behavior.


Assuntos
Aminoácidos , Peptídeos , Peptídeos/química , Conformação Molecular , Permeabilidade , Tirosina
12.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446619

RESUMO

Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.


Assuntos
Alcaloides , Saúde da População , Solanum lycopersicum , Solanum nigrum , Solanum tuberosum , Solanum , Humanos , Solanum/metabolismo , Alcaloides/química , Solanum tuberosum/metabolismo , Solanum nigrum/metabolismo
13.
Free Radic Biol Med ; 206: 111-124, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385568

RESUMO

An excessive blood level of homocysteine (HcySH) is associated with numerous cardiovascular and neurodegenerative disease conditions. It has been suggested that direct S-homocysteinylation, of proteins by HcySH, or N-homosteinylation by homocysteine thiolactone (HTL) could play a causative role in these maladies. In contrast, ascorbic acid (AA) plays a significant role in oxidative stress prevention. AA is oxidized to dehydroascorbic acid (DHA) and if not rapidly reduced back to AA may degrade to reactive carbonyl products. In the present work, DHA is shown to react with HTL to produce a spiro bicyclic ring containing a six-membered thiazinane-carboxylic acid moiety. This reaction product is likely formed by initial imine condensation and subsequent hemiaminal product followed by HTL ring opening and intramolecular nucleophilic attack of the resulting thiol anion to form the spiro product. The reaction product was determined to have an accurate mass of 291.0414 and a molecular composition C10H13NO7S containing five double bond equivalents. We structurally characterized the reaction product using a combination of accurate mass tandem mass spectrometry, 1D and 2D-nuclear magnetic resonance. We also demonstrated that formation of the reaction product prevented peptide and protein N-homocysteinylation by HTL using a model peptide and α-lactalbumin. Furthermore, the reaction product is formed in Jurkat cells when exposed to HTL and DHA.


Assuntos
Ácido Desidroascórbico , Doenças Neurodegenerativas , Humanos , Peptídeos , Homocisteína
15.
Mol Pharm ; 20(3): 1577-1590, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36781165

RESUMO

To investigate the structure-cellular penetration relationship of guanidinium-rich transporters (GRTs), we previously designed PGua4, a five-amino acid peptoid containing a conformationally restricted pattern of eight guanidines, which showed high cell-penetrating abilities and low cell toxicity. Herein, we characterized the cellular uptake selectivity, internalization pathway, and intracellular distribution of PGua4, as well as its capacity to deliver cargo. PGua4 exhibits higher penetration efficiency in HeLa cells than in six other cell lines (A549, Caco-2, fibroblast, HEK293, Mia-PaCa2, and MCF7) and is mainly internalized by clathrin-mediated endocytosis and macropinocytosis. Confocal microscopy showed that it remained trapped in endosomes at low concentrations but induced pH-dependent endosomal membrane destabilization at concentrations ≥10 µM, allowing its diffusion into the cytoplasm. Importantly, PGua4 significantly enhanced macropinocytosis and the cellular uptake and cytosolic delivery of large IgGs following noncovalent complexation. Therefore, in addition to its peptoid nature conferring high resistance to proteolysis, PGua4 presents characteristics of a promising tool for IgG delivery and therapeutic applications.


Assuntos
Peptoides , Humanos , Citosol/metabolismo , Guanidina , Células HeLa , Peptoides/metabolismo , Células CACO-2 , Células HEK293 , Endocitose , Endossomos/metabolismo
16.
ACS Pharmacol Transl Sci ; 6(2): 290-305, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798478

RESUMO

Apelin is an endogenous peptide that is involved in many diseases such as cardiovascular diseases, obesity, and cancer, which has made it an attractive target for drug discovery. Herein, we explore the penultimate and final sequence positions of [Pyr1]-apelin-13 (Ape13) via C-terminal N α-alkylated amide bonds and the introduction of positive charges, potentially targeting the allosteric sodium pocket, by assessing the binding affinity and signaling profiles at the apelin receptor (APJ). Synthetic analogues modified within this segment of Ape13 showed high affinity (K i 0.12-0.17 nM vs Ape13 K i 0.7 nM), potent Gαi1 activation (EC50 Gαi1 0.4-0.9 nM vs Ape13 EC50 1.1 nM), partial agonist behavior disfavoring ß-arrestin 2 recruitment for positively charged ligands (e.g., 49 (SBL-AP-058), EC50 ß-arr2 275 nM, E max 54%) and high plasma stability for N-alkyl ligands (t 1/2 > 7 h vs Ape13 t 1/2 0.5 h). Combining the benefits of the N α-alkylated amide bond with the guanidino substitution in a constrained ligand led to 63 (SBL-AP-049), which displayed increased plasma stability (t 1/2 5.3 h) and strong reduction of ß-arrestin 2 signaling with partial maximal efficacy (EC50 ß-arr 864 nM, E max 48%), significantly reducing the hypotensive effect in vivo.

17.
Inorg Chem ; 62(9): 3847-3859, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802562

RESUMO

The organic molecule 2-(1-phenyl-1-(pyridin-2-yl)ethyl)-6-(3-(1-phenyl-1-(pyridin-2-yl)ethyl)phenyl)pyridine (H3L) has been designed, prepared, and employed to synthesize the encapsulated-type pseudo-tris(heteroleptic) iridium(III) derivative Ir(κ6-fac-C,C',C″-fac-N,N',N″-L). Its formation takes place as a result of the coordination of the heterocycles to the iridium center and the ortho-CH bond activation of the phenyl groups. Dimer [Ir(µ-Cl)(η4-COD)]2 is suitable for the preparation of this compound of class [Ir(9h)] (9h = 9-electron donor hexadentate ligand), but Ir(acac)3 is a more appropriate starting material. Reactions were carried out in 1-phenylethanol. In contrast to the latter, 2-ethoxyethanol promotes the metal carbonylation, inhibiting the full coordination of H3L. Complex Ir(κ6-fac-C,C',C″-fac-N,N',N″-L) is a phosphorescent emitter upon photoexcitation, which has been employed to fabricate four yellow emitting devices with 1931 CIE (x:y) ∼ (0.52:0.48) and a maximum wavelength at 576 nm. These devices display luminous efficacies, external quantum efficiencies, and power efficacies at 600 cd m-2, which lie in the ranges 21.4-31.3 cd A-1, 7.8-11.3%, and 10.2-14.1 lm W1-, respectively, depending on the device configuration.

18.
Antiviral Res ; 209: 105484, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503013

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health crisis. The reduced efficacy of therapeutic monoclonal antibodies against emerging SARS-CoV-2 variants of concern (VOCs), such as omicron BA.5 subvariants, has underlined the need to explore a novel spectrum of antivirals that are effective against existing and evolving SARS-CoV-2 VOCs. To address the need for novel therapeutic options, we applied cell-based high-content screening to a library of natural products (NPs) obtained from plants, fungi, bacteria, and marine sponges, which represent a considerable diversity of chemical scaffolds. The antiviral effect of 373 NPs was evaluated using the mNeonGreen (mNG) reporter SARS-CoV-2 virus in a lung epithelial cell line (Calu-3). The screening identified 26 NPs with half-maximal effective concentrations (EC50) below 50 µM against mNG-SARS-CoV-2; 16 of these had EC50 values below 10 µM and three NPs (holyrine A, alotaketal C, and bafilomycin D) had EC50 values in the nanomolar range. We demonstrated the pan-SARS-CoV-2 activity of these three lead antivirals against SARS-CoV-2 highly transmissible Omicron subvariants (BA.5, BA.2 and BA.1) and highly pathogenic Delta VOCs in human Calu-3 lung cells. Notably, holyrine A, alotaketal C, and bafilomycin D, are potent nanomolar inhibitors of SARS-CoV-2 Omicron subvariants BA.5 and BA.2. The pan-SARS-CoV-2 activity of alotaketal C [protein kinase C (PKC) activator] and bafilomycin D (V-ATPase inhibitor) suggest that these two NPs are acting as host-directed antivirals (HDAs). Future research should explore whether PKC regulation impacts human susceptibility to and the severity of SARS-CoV-2 infection, and it should confirm the important role of human V-ATPase in the VOC lifecycle. Interestingly, we observed a synergistic action of bafilomycin D and N-0385 (a highly potent inhibitor of human TMPRSS2 protease) against Omicron subvariant BA.2 in human Calu-3 lung cells, which suggests that these two highly potent HDAs are targeting two different mechanisms of SARS-CoV-2 entry. Overall, our study provides insight into the potential of NPs with highly diverse chemical structures as valuable inspirational starting points for developing pan-SARS-CoV-2 therapeutics and for unravelling potential host factors and pathways regulating SARS-CoV-2 VOC infection including emerging omicron BA.5 subvariants.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Adenosina Trifosfatases , Antivirais/farmacologia , Antivirais/uso terapêutico , Produtos Biológicos/farmacologia , Glicoproteína da Espícula de Coronavírus
19.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203338

RESUMO

Medicinal chemistry is constantly searching for new approaches to develop more effective and targeted therapeutic molecules. The design of peptidomimetics is a promising emerging strategy that is aimed at developing peptides that mimic or modulate the biological activity of proteins. Among these, stapled peptides stand out for their unique ability to stabilize highly frequent helical motifs, but they have failed to be systematically reported. Here, we exploit chemically diverse helix-inducing i, i + 4 constraints-lactam, hydrocarbon, triazole, double triazole and thioether-on two distinct short sequences derived from the N-terminal peptidase domain of hACE2 upon structural characterization and in silico alanine scan. Our overall objective was to provide a sequence-independent comparison of α-helix-inducing staples using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. We identified a 9-mer lactam stapled peptide derived from the hACE2 sequence (His34-Gln42) capable of reaching its maximal helicity of 55% with antiviral activity in bioreporter- and pseudovirus-based inhibition assays. To the best of our knowledge, this study is the first comprehensive investigation comparing several cyclization methods with the goal of generating stapled peptides and correlating their secondary structures with PPI inhibitions using a highly topical model system (i.e., the interaction of SARS-CoV-2 Spike RBD with hACE2).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ciclização , Lactamas , Peptídeos/farmacologia , Triazóis
20.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566143

RESUMO

In order to modify amino acids, the C-terminus carboxylic acid usually needs to be protected, typically as a methyl ester. However, standard cleavage of methyl esters requires either highly basic or acidic conditions, which are not compatible with Fmoc or acid-labile protecting groups. This highlights the need for orthogonal conditions that permit selective deprotection of esters to create SPPS-ready amino acids. Herein, mild orthogonal ester hydrolysis conditions are systematically explored using calcium(II) iodide as a protective agent for the Fmoc protecting group and optimized for a broad scope of amino esters. Our optimized reaction improved on the already known trimethyltin hydroxide, as it produced better yields with greener, inexpensive chemicals and a less extensive energy expenditure.


Assuntos
Ésteres , Iodetos , Aminoácidos/química , Cálcio , Ésteres/química , Fluorenos/química , Hidrólise , Substâncias Protetoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA