RESUMO
BACKGROUND: Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. RESULTS: A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds. CONCLUSIONS: This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.
Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transdução de Sinais , Sus scrofa/genética , Animais , Cruzamento , Feminino , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Masculino , Músculo Esquelético/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Sus scrofa/classificação , Sus scrofa/metabolismo , SuínosRESUMO
BACKGROUND: Numerous quantitative trait loci (QTL) have been detected in pigs over the past 20 years using microsatellite markers. However, due to the low density of these markers, the accuracy of QTL location has generally been poor. Since 2009, the dense genome coverage provided by the Illumina PorcineSNP60 BeadChip has made it possible to more accurately map QTL using genome-wide association studies (GWAS). Our objective was to perform high-density GWAS in order to identify genomic regions and corresponding haplotypes associated with production traits in a French Large White population of pigs. METHODS: Animals (385 Large White pigs from 106 sires) were genotyped using the PorcineSNP60 BeadChip and evaluated for 19 traits related to feed intake, growth, carcass composition and meat quality. Of the 64,432 SNPs on the chip, 44,412 were used for GWAS with an animal mixed model that included a regression coefficient for the tested SNPs and a genomic kinship matrix. SNP haplotype effects in QTL regions were then tested for association with phenotypes following phase reconstruction based on the Sscrofa10.2 pig genome assembly. RESULTS: Twenty-three QTL regions were identified on autosomes and their effects ranged from 0.25 to 0.75 phenotypic standard deviation units for feed intake and feed efficiency (four QTL), carcass (12 QTL) and meat quality traits (seven QTL). The 10 most significant QTL regions had effects on carcass (chromosomes 7, 10, 16, 17 and 18) and meat quality traits (two regions on chromosome 1 and one region on chromosomes 8, 9 and 13). Thirteen of the 23 QTL regions had not been previously described. A haplotype block of 183 kb on chromosome 1 (six SNPs) was identified and displayed three distinct haplotypes with significant (0.0001 < P < 0.03) associations with all evaluated meat quality traits. CONCLUSIONS: GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat quality traits in a LW population, of which 13 were novel QTL. The proportionally larger number of QTL found for meat quality traits suggests a specific opportunity for improving these traits in the pig by genomic selection.
Assuntos
Haplótipos , Carne/análise , Locos de Características Quantitativas , Sus scrofa/genética , Animais , Composição Corporal , Genoma , Estudo de Associação Genômica Ampla , Genótipo , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Sus scrofa/crescimento & desenvolvimento , Sus scrofa/fisiologiaRESUMO
BACKGROUND: Increasing robustness via improvement of resistance to pathogens is a major selection objective in livestock breeding. As resistance traits are difficult or impossible to measure directly, potential indirect criteria are measures of immune traits (ITs). Our underlying hypothesis is that levels of ITs with no focus on specific pathogens define an individual's immunocompetence and thus predict response to pathogens in general. Since variation in ITs depends on genetic, environmental and probably epigenetic factors, our aim was to estimate the relative importance of genetics. In this report, we present a large genetic survey of innate and adaptive ITs in pig families bred in the same environment. METHODOLOGY/PRINCIPAL FINDINGS: Fifty four ITs were studied on 443 Large White pigs vaccinated against Mycoplasma hyopneumoniae and analyzed by combining a principal component analysis (PCA) and genetic parameter estimation. ITs include specific and non specific antibodies, seric inflammatory proteins, cell subsets by hemogram and flow cytometry, ex vivo production of cytokines (IFNα, TNFα, IL6, IL8, IL12, IFNγ, IL2, IL4, IL10), phagocytosis and lymphocyte proliferation. While six ITs had heritabilities that were weak or not significantly different from zero, 18 and 30 ITs had moderate (0.1
0.4) heritability values, respectively. Phenotypic and genetic correlations between ITs were weak except for a few traits that mostly include cell subsets. PCA revealed no cluster of innate or adaptive ITs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that variation in many innate and adaptive ITs is genetically controlled in swine, as already reported for a smaller number of traits by other laboratories. A limited redundancy of the traits was also observed confirming the high degree of complementarity between innate and adaptive ITs. Our data provide a genetic framework for choosing ITs to be included as selection criteria in multitrait selection programmes that aim to improve both production and health traits.
Assuntos
Imunidade Adaptativa/genética
, Marcadores Genéticos
, Variação Genética
, Imunidade Inata/genética
, Doenças dos Suínos/genética
, Doenças dos Suínos/imunologia
, Animais
, Cruzamento
, Citocinas/metabolismo
, Feminino
, Citometria de Fluxo
, Masculino
, Mycoplasma hyopneumoniae/imunologia
, Fenótipo
, Pneumonia Suína Micoplasmática/genética
, Pneumonia Suína Micoplasmática/imunologia
, Pneumonia Suína Micoplasmática/prevenção & controle
, Análise de Componente Principal
, Seleção Genética
, Suínos
, Vacinação
RESUMO
Improving animal robustness and resistance to pathogens by adding health criteria in selection schemes is one of the challenging objectives of the next decade. In order to better understand the genetic control of immunity in French Large White pigs, we have launched a program combining genetic and genomic studies not focussing on any particular pathogen. Animals recorded for production traits were scored for a wide range of immunity parameters three weeks after vaccination against Mycoplasma hyopneumoniae: i) total white blood cells and lymphocyte counts and proportions of various leucocyte subsets including cells harbouring IgM, γδTCR, CD4/CD8, CD16/CD2 and CD16/CD172a/MHCII, ii) innate immune response parameters (phagocytosis and in vitro production of IL1B, IL6, IL8, TNF, IL12 and IFNαafter blood stimulation), iii) adaptive immune response parameters (lymphocyte proliferation, in vitro production of IL2, IL4, IL10 and IFNγ after blood stimulation, total IgG, IgA, IgM and specific IgG levels) and iv) two acute phase proteins (C-reactive protein and haploglobin). Across traits, heritability estimates reached 0.4 on average (se=0.1) and 42 of the 54 measured parameters showed moderate to high heritabilities (≥0.2), confirming that many parameters are under genetic control and could be included in selection protocols. Functional analyses revealed that the blood transcriptome is informative for part of the immunity traits and should provide relevant phenotypic information to better characterize some immunity traits.