Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(4): 046704, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763433

RESUMO

Tuning of the anisotropic Gilbert damping Δα has been realized in ultrathin single-crystalline Fe films grown on GaAs (001). A nonmonotonic dependence of Δα on film thickness t is observed upon varying t about 10 ML (∼1.4 nm). Δα increases for 16 ML>t>8.5 ML, and then decreases for 8.5 ML>t>6.5 ML accompanied by a sign reversal of Δα for t=6.5 ML. The sign reversal of Δα is captured by first-principle calculations, which show that the anisotropic density of states changes sign upon decreasing t. Moreover, t^{-1} dependence of the anisotropic damping indicates the emergence of an anisotropic effective spin mixing conductance according to the theory of spin pumping. The results establish new opportunities for controlling the Gilbert damping and for fundamental studies of magnetization dynamics in reduced dimension.

2.
Phys Rev Lett ; 126(17): 177404, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988443

RESUMO

We explore the nonlinear response of tailor-cut light-matter hybrid states in a novel regime, where both the Rabi frequency induced by a coherent driving field and the vacuum Rabi frequency set by a cavity field are comparable to the carrier frequency of light. In this previously unexplored strong-field limit of ultrastrong coupling, subcycle pump-probe and multiwave mixing nonlinearities between different polariton states violate the normal-mode approximation while ultrastrong coupling remains intact, as confirmed by our mean-field model. We expect such custom-cut nonlinearities of hybridized elementary excitations to facilitate nonclassical light sources, quantum phase transitions, or cavity chemistry with virtual photons.

3.
Nat Photonics ; 14(11): 675-679, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34221109

RESUMO

Atomically strong light pulses can drive sub-optical-cycle dynamics. When the Rabi frequency - the rate of energy exchange between light and matter - exceeds the optical carrier frequency, fascinating non-perturbative strong-field phenomena emerge, such as high-harmonic generation and lightwave transport. Here, we explore a related novel subcycle regime of ultimately strong light-matter interaction without a coherent driving field. We use the vacuum fluctuations of nanoantennas to drive cyclotron resonances of two-dimensional electron gases to vacuum Rabi frequencies exceeding the carrier frequency. Femtosecond photoactivation of a switch element inside the cavity disrupts this 'deep-strong coupling' more than an order of magnitude faster than the oscillation cycle of light. The abrupt modification of the vacuum ground state causes spectrally broadband polarisation oscillations confirmed by our quantum model. In the future, this subcycle shaping of hybrid quantum states may trigger cavity-induced quantum chemistry, vacuum-modified transport, or cavity-controlled superconductivity, opening new scenarios for non-adiabatic quantum optics.

4.
Nano Lett ; 19(2): 930-936, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30601668

RESUMO

We present a scanning magnetic force sensor based on an individual magnet-tipped GaAs nanowire (NW) grown by molecular beam epitaxy. Its magnetic tip consists of a final segment of single-crystal MnAs formed by sequential crystallization of the liquid Ga catalyst droplet. We characterize the mechanical and magnetic properties of such NWs by measuring their flexural mechanical response in an applied magnetic field. Comparison with numerical simulations allows the identification of their equilibrium magnetization configurations, which in some cases include magnetic vortices. To determine a NW's performance as a magnetic scanning probe, we measure its response to the field profile of a lithographically patterned current-carrying wire. The NWs' tiny tips and their high force sensitivity make them promising for imaging weak magnetic field patterns on the nanometer-scale, as required for mapping mesoscopic transport and spin textures or in nanometer-scale magnetic resonance.

5.
Phys Rev Lett ; 120(22): 225902, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906135

RESUMO

Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600° C. The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of self-diffusion is described by an Arrhenius law with an activation enthalpy Q=(2.70±0.11) eV and preexponential factor D_{0}=(5.5_{-3.7}^{+11.1})×10^{-2} cm^{2} s^{-1}. Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strauß et al. (Phys. Rev. Lett. 116, 025901 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.025901).

6.
Nat Commun ; 8(1): 1807, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29176607

RESUMO

A large spin-dependent and electric field-tunable magnetoresistance of a two-dimensional electron system is a key ingredient for the realization of many novel concepts for spin-based electronic devices. The low magnetoresistance observed during the last few decades in devices with lateral semiconducting transport channels between ferromagnetic source and drain contacts has been the main obstacle for realizing spin field effect transistor proposals. Here, we show both a large two-terminal magnetoresistance in a lateral spin valve device with a two-dimensional channel, with up to 80% resistance change, and tunability of the magnetoresistance by an electric gate. The enhanced magnetoresistance is due to finite electric field effects at the contact interface, which boost spin-to-charge conversion. The gating scheme that we use is based on switching between uni- and bidirectional spin diffusion, without resorting to spin-orbit coupling. Therefore, it can also be employed in materials with low spin-orbit coupling.

7.
Nat Commun ; 7: 13802, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958265

RESUMO

Interfacial spin-orbit torques (SOTs) enable the manipulation of the magnetization through in-plane charge currents, which has drawn increasing attention for spintronic applications. The search for material systems providing efficient SOTs, has been focused on polycrystalline ferromagnetic metal/non-magnetic metal bilayers. In these systems, currents flowing in the non-magnetic layer generate-due to strong spin-orbit interaction-spin currents via the spin Hall effect and induce a torque at the interface to the ferromagnet. Here we report the observation of robust SOT occuring at a single crystalline Fe/GaAs (001) interface at room temperature. We find that the magnitude of the interfacial SOT, caused by the reduced symmetry at the interface, is comparably strong as in ferromagnetic metal/non-magnetic metal systems. The large spin-orbit fields at the interface also enable spin-to-charge current conversion at the interface, known as spin-galvanic effect. The results suggest that single crystalline Fe/GaAs interfaces may enable efficient electrical magnetization manipulation.

8.
Phys Rev Lett ; 117(15): 157202, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768325

RESUMO

We report the observation of the anisotropic polar magneto-optical Kerr effect in thin layers of epitaxial Fe/GaAs(001) at room temperature. A clear twofold symmetry of the Kerr rotation angle depending on the orientation of the linear polarization of the probing laser beam with respect to the crystallographic directions of the sample is detected for ultrathin magnetic films saturated out of the film plane. The amplitude of the anisotropy decreases with increasing Fe film thickness, suggesting that the interfacial region is the origin of the anisotropy. The twofold symmetry is fully reproduced by model calculations based on an interference of interfacial Bychkov-Rashba and Dresselhaus spin-orbit coupling.

9.
Nat Commun ; 6: 7374, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26051594

RESUMO

The desire for higher information capacities drives the components of electronic devices to ever smaller dimensions so that device properties are determined increasingly more by interfaces than by the bulk structure of the constituent materials. Spintronic devices, especially, benefit from the presence of interfaces--the reduced structural symmetry creates emergent spin-orbit fields that offer novel possibilities to control device functionalities. But where does the bulk end, and the interface begin? Here we trace the interface-to-bulk transition, and follow the emergence of the interfacial spin-orbit fields, in the conducting states of a few monolayers of iron on top of gallium arsenide. We observe the transition from the interface- to bulk-induced lateral crystalline magnetoanisotropy, each having a characteristic symmetry pattern, as the epitaxially grown iron channel increases from four to eight monolayers. Setting the upper limit on the width of the interface-imprinted conducting channel is an important step towards an active control of interfacial spin-orbit fields.

10.
Phys Rev Lett ; 113(23): 236602, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526144

RESUMO

We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.

11.
Phys Rev Lett ; 113(22): 227401, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494089

RESUMO

Terahertz near fields of gold metamaterials resonant at a frequency of 0.88 THz allow us to enter an extreme limit of nonperturbative ultrafast terahertz electronics: Fields reaching a ponderomotive energy in the keV range are exploited to drive nondestructive, quasistatic interband tunneling and impact ionization in undoped bulk GaAs, injecting electron-hole plasmas with densities in excess of 10^{19} cm^{-3}. This process causes bright luminescence at energies up to 0.5 eV above the band gap and induces a complete switch-off of the metamaterial resonance accompanied by self-amplitude-modulation of transmitted few-cycle terahertz transients. Our results pave the way towards highly nonlinear terahertz optics and optoelectronic nanocircuitry with subpicosecond switching times.

12.
Nat Commun ; 4: 2068, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23820766

RESUMO

Spin injection and extraction are at the core of semiconductor spintronics. Electrical injection is one method of choice for the creation of a sizeable spin polarization in a semiconductor, requiring especially tailored tunnel or Schottky barriers. Alternatively, optical orientation can be used to generate spins in semiconductors with significant spin-orbit interaction, if optical selection rules are obeyed, typically by using circularly polarized light at a well-defined wavelength. Here we introduce a novel concept for spin injection/extraction that combines the principle of a solar cell with the creation of spin accumulation. We demonstrate that efficient optical spin injection can be achieved with unpolarized light by illuminating a p-n junction where the p-type region consists of a ferromagnet. The discovered mechanism opens the window for the optical generation of a sizeable spin accumulation also in semiconductors without direct band gap such as Si or Ge.

13.
Nanotechnology ; 23(46): 465202, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23092817

RESUMO

We have grown an ultrathin epitaxial Fe/MgO bilayer on (Ga, Mn)As by e-beam evaporation in UHV. The system structure has been investigated by high resolution transmission electron microscopy (TEM) experiments which show that the Fe and MgO films, covering completely the (Ga, Mn)As, grow with the epitaxial relationship Fe[100](001) [parallel] MgO[110](001) [parallel] (Ga,Mn)As[110](001). The magnetic reversal process, studied by the magneto-optical Kerr effect (MOKE) at room temperature, demonstrates that the iron is ferromagnetic and possesses a cubic anisotropy, confirming the epitaxy relationship found with TEM. Resistivity measurements across the barrier display a non-Ohmic behavior characterized by cubic conductance as a function of the applied voltage suggesting tunneling-dominated transport across the barrier.

14.
Phys Rev Lett ; 107(5): 056601, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21867085

RESUMO

We investigate the increase of the Curie temperature T(C) in a lateral spin injection geometry where the ferromagnetic (Ga,Mn)As injector and detector contacts are capped by a thin iron film. Because of interlayer coupling between Fe and (Ga,Mn)As T(C) gets enhanced by nearly 100% for the thinnest (Ga,Mn)As films. The use of the proximity effect might pave the way for practical implementation of spintronic devices.

15.
Nano Lett ; 9(11): 3743-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19751066

RESUMO

Controlled nanoscale self-assembly of magnetic entities in semiconductors opens novel perspectives for the tailoring of magnetic semiconductor films and nanostructures with room temperature functionality. We report that a strongly directional self-assembly in growth direction in Mn-alloyed Ge is due to a stacking of individual Ge(1-x)Mn(x) clusters. The clusters represent the relevant entities for the magnetization of the material. They are formed of a core-shell structure displaying a Mn concentration gradient. While the magnetic moments seem to be carried by the shells of the clusters, their core is magnetically inactive.

16.
Phys Rev Lett ; 103(25): 255501, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20366261

RESUMO

We report experiments on the impact of 2.5 MeV proton irradiation on self-diffusion and dopant diffusion in germanium (Ge). Self-diffusion under irradiation reveals an unusual depth independent broadening of the Ge isotope multilayer structure. This behavior and the observed enhanced diffusion of B and retarded diffusion of P demonstrates that an interstitial-mediated diffusion process dominates in Ge under irradiation. This fundamental finding opens up unique ways to suppress vacancy-mediated diffusion in Ge and to solve the donor deactivation problem that hinders the fabrication of Ge-based nanoelectronic devices.

17.
Phys Rev Lett ; 97(23): 237202, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17280238

RESUMO

We present the first study relating structural parameters of precipitate-free Ge0.95Mn0.05 films to magnetization data. Nanometer-sized clusters--areas with increased Mn content on substitutional lattice sites compared to the host matrix--are detected in transmission electron microscopy analysis. The films show no overall spontaneous magnetization at all down to 2 K. The TEM and magnetization results are interpreted in terms of an assembly of superparamagnetic moments developing in the dense distribution of clusters. Each cluster individually turns ferromagnetic below an ordering temperature which depends on its volume and Mn content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA