Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(26): 28951-28960, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973911

RESUMO

In the modern era of the Internet of Things, the potential role of flexible piezoelectric generators (PEG) reflects the rapid increase in self-powered devices and wearable technologies. In this study, a casting process to elaborate the polydimethylsiloxane (PDMS)/barium titanate (BaTiO 3) composite has been presented. The addition of 15 wt % BaTiO 3 microparticles into the PDMS polymer greatly enhances the piezoelectric coefficient (d 31 = 24 pC N-1), leading to an increased output voltage of approximately 4 V under finger tapping force. The proposed flexible microgenerator yielded an excellent piezoelectric figure of merit (FoM 31 = 13.1 × 10-12 m2 N-1), significantly enhancing successfully the energy-harvesting performance (power density of 35 nW/cm2). Furthermore, the fabricated lead-free PEG exhibited an excellent flexibility figure of merit (fFoM) due to the low young modulus values (Maximum E = 3.4 MPa). These results indicate efficient energy conversion and demonstrate a favorable balance between the flexibility and piezoelectric properties of the composite, highlighting its potential for a wide range of applications in self-powered wearable sensors able to collect different human motions in applications such as gesture tracking and finger motion detection.

2.
Sensors (Basel) ; 22(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684803

RESUMO

Wearable sensors are gaining attention in human health monitoring applications, even if their usability is limited due to battery need. Flexible nanogenerators (NGs) converting biomechanical energy into electrical energy offer an interesting solution, as they can supply the sensors or extend the battery lifetime. Herein, flexible generators based on lead-free barium titanate (BaTiO3) and a polydimethylsiloxane (PDMS) polymer have been developed. A comparative study was performed to investigate the impact of multiwalled carbon nanotubes (MWCNTs) via structural, morphological, electrical, and electromechanical measurements. This study demonstrated that MWCNTs boosts the performance of the NG at the percolation threshold. This enhancement is attributed to the enhanced conductivity that promotes charge transfer and enhanced mechanical property and piezoceramics particles distribution. The nanogenerator delivers a maximum open-circuit voltage (VOC) up to 1.5 V and output power of 40 nW, which is two times higher than NG without MWCNTs. Additionally, the performance can be tuned by controlling the composite thickness and the applied frequency. Thicker NG shows a better performance, which enlarges their potential use for harvesting biomechanical energy efficiently up to 11.22 V under palm striking. The voltage output dependency on temperature was also investigated. The results show that the output voltage changes enormously with the temperature.


Assuntos
Nanotubos de Carbono , Polímeros , Compostos de Bário , Dimetilpolisiloxanos , Fontes de Energia Elétrica , Humanos , Titânio
3.
Sensors (Basel) ; 21(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419047

RESUMO

In the last decade, significant developments of flexible and stretchable force sensors have been witnessed in order to satisfy the demand of several applications in robotic, prosthetics, wearables and structural health monitoring bringing decisive advantages due to their manifold customizability, easy integration and outstanding performance in terms of sensor properties and low-cost realization. In this paper, we review current advances in this field with a special focus on polymer/carbon nanotubes (CNTs) based sensors. Based on the electrical properties of polymer/CNTs nanocomposite, we explain underlying principles for pressure and strain sensors. We highlight the influence of the manufacturing processes on the achieved sensing properties and the manifold possibilities to realize sensors using different shapes, dimensions and measurement procedures. After an intensive review of the realized sensor performances in terms of sensitivity, stretchability, stability and durability, we describe perspectives and provide novel trends for future developments in this intriguing field.


Assuntos
Nanocompostos , Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Polímeros
4.
Sensors (Basel) ; 21(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466681

RESUMO

Nowadays, wireless sensor networks are becoming increasingly important in several sectors including industry, transportation, environment and medicine. This trend is reinforced by the spread of Internet of Things (IoT) technologies in almost all sectors. Autonomous energy supply is thereby an essential aspect as it decides the flexible positioning and easy maintenance, which are decisive for the acceptance of this technology, its wide use and sustainability. Significant improvements made in the last years have shown interesting possibilities for realizing energy-aware wireless sensor nodes (WSNs) by designing manifold and highly efficient energy converters and reducing energy consumption of hardware, software and communication protocols. Using only a few of these techniques or focusing on only one aspect is not sufficient to realize practicable and market relevant solutions. This paper therefore provides a comprehensive review on system design for battery-free and energy-aware WSN, making use of ambient energy or wireless energy transmission. It addresses energy supply strategies and gives a deep insight in energy management methods as well as possibilities for energy saving on node and network level. The aim therefore is to provide deep insight into system design and increase awareness of suitable techniques for realizing battery-free and energy-aware wireless sensor nodes.

5.
Sensors (Basel) ; 14(6): 10042-71, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24915183

RESUMO

Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA