Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Acta Neuropathol ; 135(1): 131-148, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28780615

RESUMO

Mutations in the small heat shock protein B8 gene (HSPB8/HSP22) have been associated with distal hereditary motor neuropathy, Charcot-Marie-Tooth disease, and recently distal myopathy. It is so far not clear how mutant HSPB8 induces the neuronal and muscular phenotypes and if a common pathogenesis lies behind these diseases. Growing evidence points towards a role of HSPB8 in chaperone-associated autophagy, which has been shown to be a determinant for the clearance of poly-glutamine aggregates in neurodegenerative diseases but also for the maintenance of skeletal muscle myofibrils. To test this hypothesis and better dissect the pathomechanism of mutant HSPB8, we generated a new transgenic mouse model leading to the expression of the mutant protein (knock-in lines) or the loss-of-function (functional knock-out lines) of the endogenous protein Hspb8. While the homozygous knock-in mice developed motor deficits associated with degeneration of peripheral nerves and severe muscle atrophy corroborating patient data, homozygous knock-out mice had locomotor performances equivalent to those of wild-type animals. The distal skeletal muscles of the post-symptomatic homozygous knock-in displayed Z-disk disorganisation, granulofilamentous material accumulation along with Hspb8, αB-crystallin (HSPB5/CRYAB), and desmin aggregates. The presence of the aggregates correlated with reduced markers of effective autophagy. The sciatic nerve of the homozygous knock-in mice was characterized by low autophagy potential in pre-symptomatic and Hspb8 aggregates in post-symptomatic animals. On the other hand, the sciatic nerve of the homozygous knock-out mice presented a normal morphology and their distal muscle displayed accumulation of abnormal mitochondria but intact myofiber and Z-line organisation. Our data, therefore, suggest that toxic gain-of-function of mutant Hspb8 aggregates is a major contributor to the peripheral neuropathy and the myopathy. In addition, mutant Hspb8 induces impairments in autophagy that may aggravate the phenotype.


Assuntos
Miopatias Distais/metabolismo , Mutação com Ganho de Função , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Atrofia/metabolismo , Atrofia/patologia , Autofagia/fisiologia , Modelos Animais de Doenças , Miopatias Distais/patologia , Feminino , Proteínas de Choque Térmico , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Chaperonas Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
2.
Acta Neuropathol Commun ; 5(1): 5, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077174

RESUMO

The small heat shock protein HSPB1 (Hsp27) is an ubiquitously expressed molecular chaperone able to regulate various cellular functions like actin dynamics, oxidative stress regulation and anti-apoptosis. So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Most mutations in HSPB1 target its highly conserved α-crystallin domain, while other mutations affect the C- or N-terminal regions or its promotor. Mutations inside the α-crystallin domain have been shown to enhance the chaperone activity of HSPB1 and increase the binding to client proteins. However, the HSPB1-P182L mutation, located outside and downstream of the α-crystallin domain, behaves differently. This specific HSPB1 mutation results in a severe neuropathy phenotype affecting exclusively the motor neurons of the peripheral nervous system. We identified that the HSPB1-P182L mutant protein has a specifically increased interaction with the RNA binding protein poly(C)binding protein 1 (PCBP1) and results in a reduction of its translational repressive activity. RNA immunoprecipitation followed by RNA sequencing on mouse brain lead to the identification of PCBP1 mRNA targets. These targets contain larger 3'- and 5'-UTRs than average and are enriched in an RNA motif consisting of the CTCCTCCTCCTCC consensus sequence. Interestingly, next to the clear presence of neuronal transcripts among the identified PCBP1 targets we identified known genes associated with hereditary peripheral neuropathies and hereditary spastic paraplegias. We therefore conclude that HSPB1 can mediate translational repression through interaction with an RNA binding protein further supporting its role in neurodegenerative disease.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Transporte/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Sequência Consenso , Proteínas de Ligação a DNA , Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Proteínas de Choque Térmico HSP27/genética , Células HeLa , Proteínas de Choque Térmico/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Camundongos , Chaperonas Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Proteínas de Neoplasias/genética , Ligação Proteica , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Regiões não Traduzidas
3.
J Neuromuscul Dis ; 3(2): 183-200, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27854215

RESUMO

BACKGROUND: Charcot-Marie-Tooth (CMT) and associated neuropathies, the most common inherited diseases of the peripheral nervous system, remain so far incurable. Three existing murine models of Charcot-Marie-Tooth type 2F (CMT2F) and/or distal hereditary motor neuropathy type IIb (dHMNIIb), caused by mutations in the small heat shock protein B1 gene (HSPB1/HSP27), partially recapitulate the hallmarks of peripheral neuropathy. Because these models overexpress the HSPB1 mutant proteins they differ from the patients' situation. OBJECTIVE: To overcome the possible bias induced by overexpression, we generated and characterized a transgenic model in which the wild type or mutant HSPB1 protein was expressed at a moderate, more physiologically relevant level. METHODS: We generated a new transgenic mouse model in which a human wild type (hHSPB1WT) or mutant (hHSPB1R127W; hHSPB1P182L) HSPB1 transgene was integrated in the mouse ROSA26 locus. The motor and sensory functions of the mice was assessed at 3, 6, 9, 12 and 18 month. RESULTS: However, the mice expressing the mutant hHSPB1 do not develop motor or sensory deficits and do not show any sign of axonal degeneration, even at late age. Quantitative PCR analyses reveal contrasting tissue-specific expression pattern for the endogenous mouse and exogenous human HSPB1 and show that the ratio of human HSPB1 to the endogenous mouse HspB1 is lower in the sciatic nerve and spinal cord compared to the brain. CONCLUSION: These results suggest that expressing the transgene at a physiological level using the ROSA26 locus may not be sufficient to model inherited peripheral neuropathies caused by mutation in HSPB1.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP27/genética , Camundongos , Animais , Encéfalo/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/fisiopatologia , Feminino , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Camundongos Transgênicos , Chaperonas Moleculares , Mutação , Nervo Isquiático/metabolismo , Medula Espinal/metabolismo
4.
Hum Genet ; 135(8): 851-67, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27215579

RESUMO

Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Processamento Alternativo/genética , Humanos , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Biossíntese de Proteínas , Estabilidade de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Transcrição Gênica
5.
Ann Neurol ; 74(3): 391-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23913540

RESUMO

Charcot-Marie-Tooth (CMT) neuropathies are inherited neuromuscular disorders caused by a length-dependent neurodegeneration of peripheral nerves. More than 900 mutations in 60 different genes are causative of the neuropathy. Despite significant progress in therapeutic strategies, the disease remains incurable. The increasing number of genes linked to the disease, and their considerable clinical and genetic heterogeneity render the development of these strategies particularly challenging. In this context, cellular and animals models provide powerful tools. Efficient motor and sensory tests have been developed to assess the behavioral phenotype in transgenic animal models (rodent and fly). When these models reproduce a phenotype comparable to CMT, they allow therapeutic approaches and the discovery of modifiers and biomarkers. In this review, we describe the most convincing transgenic rodent and fly models of CMT and how they can lead to clinical trial. We also discuss the challenges that the research, the clinic, and the pharmaceutical industry will face in developing efficient and accessible treatment for CMT patients.


Assuntos
Doença de Charcot-Marie-Tooth/terapia , Modelos Animais de Doenças , Animais , Animais Geneticamente Modificados , Doença de Charcot-Marie-Tooth/genética , Humanos , Mutação
6.
Acta Neuropathol ; 126(1): 93-108, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23728742

RESUMO

Mutations in the small heat shock protein HSPB1 (HSP27) are a cause of axonal Charcot-Marie-Tooth neuropathy (CMT2F) and distal hereditary motor neuropathy. To better understand the effect of mutations in HSPB1 on the neuronal cytoskeleton, we stably transduced neuronal cells with wild-type and mutant HSPB1 and investigated axonal transport of neurofilaments (NFs). We observed that mutant HSPB1 affected the binding of NFs to the anterograde motor protein kinesin, reducing anterograde transport of NFs. These deficits were associated with an increased phosphorylation of NFs and cyclin-dependent kinase Cdk5. As Cdk5 mediates NF phosphorylation, inhibition of Cdk5/p35 restored NF phosphorylation level, as well as NF binding to kinesin in mutant HSPB1 neuronal cells. Altogether, we demonstrate that HSPB1 mutations induce hyperphosphorylation of NFs through Cdk5 and reduce anterograde transport of NFs.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas de Choque Térmico HSP27/genética , Mutação/genética , Proteínas de Neurofilamentos/metabolismo , Transporte Axonal/genética , Axônios/metabolismo , Axônios/patologia , Linhagem Celular Tumoral , Quinase 5 Dependente de Ciclina/genética , Proteínas de Choque Térmico , Humanos , Imunoprecipitação , Cinesinas/metabolismo , Chaperonas Moleculares , Neuroblastoma/patologia , Fosforilação/genética , Transfecção/métodos
7.
J Peripher Nerv Syst ; 17(4): 365-76, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23279337

RESUMO

The intermediate filaments called neurofilaments (NFs) are the main cytoskeleton elements in neurons. They are mainly present in the adult axonal cytoskeleton, where they are extensively phosphorylated and their phosphorylation status is pivotal for their properties and functions. Specific phosphorylation of the C-terminal domains of the large NF subunits has been implicated in radial axonal growth, NF bundling, and NF axonal transport. Many kinases and phosphatases are involved in regulating the NF phosphorylation status, and this complex interplay is of growing interest as hyperphosphorylation of NFs is a hallmark of several neurodegenerative diseases. In this review, we focus on the in vivo relevance of C-tail phosphorylation of the large NF subunits and give an overview of the kinases and phosphatases involved in regulating the phosphorylation status of the NFs.


Assuntos
Proteínas de Neurofilamentos/metabolismo , Prolina/metabolismo , Proteínas Quinases/metabolismo , Animais , Doença , Saúde , Humanos , Filamentos Intermediários/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Fosforilação
8.
J Neurosci ; 31(45): 16298-308, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072681

RESUMO

Spinal cord injury (SCI) triggers inflammatory responses that involve neutrophils, macrophages/microglia and astrocytes and molecules that potentially cause secondary tissue damage and functional impairment. Here, we assessed the contribution of the calcium-dependent K⁺ channel KCNN4 (KCa3.1, IK1, SK4) to secondary damage after moderate contusion lesions in the lower thoracic spinal cord of adult mice. Changes in KCNN4 mRNA levels (RT-PCR), KCa3.1 protein expression (Western blots), and cellular expression (immunofluorescence) in the mouse spinal cord were monitored between 1 and 28 d after SCI. KCNN4 mRNA and KCa3.1 protein rapidly increased after SCI; double labeling identified astrocytes as the main cellular source accounting for this upregulation. Locomotor function after SCI, evaluated for 28 d in an open-field test using the Basso Mouse Scale, was improved in a dose-dependent manner by treating mice with a selective inhibitor of KCa3.1 channels, TRAM-34 (triarylmethane-34). Improved locomotor function was accompanied by reduced tissue loss at 28 d and increased neuron and axon sparing. The rescue of tissue by TRAM-34 treatment was preceded by reduced expression of the proinflammatory mediators, tumor necrosis factor-α and interleukin-1ß in spinal cord tissue at 12 h after injury, and reduced expression of inducible nitric oxide synthase at 7 d after SCI. In astrocytes in vitro, TRAM-34 inhibited Ca²âº signaling in response to metabotropic purinergic receptor stimulation. These results suggest that blocking the KCa3.1 channel could be a potential therapeutic approach for treating secondary damage after spinal cord injury.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Atividade Motora/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Regulação para Cima/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Bloqueadores dos Canais de Potássio/uso terapêutico , Pirazóis/uso terapêutico , RNA Mensageiro/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Tapsigargina/farmacologia , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Uridina Trifosfato/farmacologia
9.
Brain ; 133(Pt 1): 126-38, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20047904

RESUMO

Secretory leukocyte protease inhibitor is a serine protease inhibitor produced by various cell types, including neutrophils and activated macrophages, and has anti-inflammatory properties. It has been shown to promote wound healing in the skin and other non-neural tissues, however, its role in central nervous system injury was not known. We now report a beneficial role for secretory leukocyte protease inhibitor after spinal cord injury. After spinal cord contusion injury in mice, secretory leukocyte protease inhibitor is expressed primarily by astrocytes and neutrophils but not macrophages. We show, using transgenic mice over-expressing secretory leukocyte protease inhibitor, that this molecule has an early protective effect after spinal cord contusion injury. Furthermore, wild-type mice treated for the first week after spinal cord contusion injury with recombinant secretory leukocyte protease inhibitor exhibit sustained improvement in locomotor control and reduced secondary tissue damage. Recombinant secretory leukocyte protease inhibitor injected intraperitoneally localizes to the nucleus of circulating leukocytes, is detected in the injured spinal cord, reduces activation of nuclear factor-kappaB and expression of tumour necrosis factor-alpha. Administration of recombinant secretory leukocyte protease inhibitor might therefore be useful for the treatment of acute spinal cord injury.


Assuntos
Inibidor Secretado de Peptidases Leucocitárias/fisiologia , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/prevenção & controle , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Atividade Motora/fisiologia , Recuperação de Função Fisiológica/fisiologia , Inibidor Secretado de Peptidases Leucocitárias/genética , Traumatismos da Medula Espinal/genética
10.
J Neurochem ; 112(3): 762-72, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19925583

RESUMO

Ependymal cells located around the central canal of the adult spinal cord are considered as a source of neural stem cells (NSCs) and represent an interesting pool of endogenous stem cells for repair strategies. Physical exercise is known to increase ependymal cell proliferation, while improving functional recovery. In this work, we further characterized those endogenous NSCs within the normal and injured adult rat spinal cord and investigated the effects of treadmill training using immunohistochemical and behavioral studies. In uninjured untrained rats, Sox-2, a NSC marker, was detected in all ependymal cells of the central canal, and also scattered throughout the parenchyma of the spinal cord. Within the lesion, Sox-2 expression increased transiently, while the number of nestin-positive ependymal cells increased with a concomitant enhancement of proliferation, as indicated by the mitotic markers Ki67 and bromo-deoxyuridine. Exercise, which improved functional recovery and autonomous micturition, maintained nestin expression in both injured and uninjured spinal cords, with a positive correlation between locomotor recovery and the number of nestin-positive cells.


Assuntos
Células-Tronco Adultas/fisiologia , Epêndima/patologia , Terapia por Exercício/métodos , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Bromodesoxiuridina/metabolismo , Proliferação de Células , Diagnóstico por Imagem , Modelos Animais de Doenças , Teste de Esforço/métodos , Comportamento Exploratório/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glicoproteínas/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Antígeno Ki-67/metabolismo , Locomoção/fisiologia , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Nestina , Peptídeos/metabolismo , Desempenho Psicomotor/fisiologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Fatores de Transcrição SOXB1/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação
11.
Exp Neurol ; 223(1): 173-82, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19576891

RESUMO

Pro-inflammatory chemokines and cytokines play an important role in Wallerian degeneration (WD) after peripheral nerve injury. These pro-inflammatory signals are "turned-off" in a timely manner to ensure that the inflammatory response in the injured nerve is limited. The factors that regulate the turning-off of the pro-inflammatory state are not fully understood. The suppressors of cytokine signaling (SOCS) proteins are potential candidates that could limit the inflammatory response by acting to regulate cytokine signaling at the intracellular level. In this work we show that the expression SOCS1 and SOCS3 proteins differ from each other during WD in the mouse sciatic nerve after cut/ligation and crush injuries. SOCS1 is mainly expressed by macrophages and its expression is inversely correlated with phosphorylation of JAK2 and STAT3 signaling proteins and the expression of pro-inflammatory cytokines IL-1beta and TNFalpha. In addition, treatment of cut/ligated nerves, which express lower levels of SOCS1 as compared to crush injury, with a SOCS1 mimetic peptide leads to a decrease in macrophage numbers at 14 days post-injury and reduces IL-1beta mRNA expression 1 day post-injury. In contrast, SOCS3 expression is restricted mainly to Schwann cells and is negatively correlated with the expression of IL-6 and LIF. These data suggest that SOCS1 and SOCS3 may play different roles in WD and provide a better understanding of some of the potential regulatory mechanisms that may control inflammation and regeneration in the injured peripheral nerve.


Assuntos
Regulação da Expressão Gênica/fisiologia , Neuropatia Ciática/complicações , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Degeneração Walleriana/etiologia , Degeneração Walleriana/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/metabolismo , Fosforilação/fisiologia , RNA Mensageiro/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Células de Schwann/metabolismo , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Tempo , Degeneração Walleriana/patologia
12.
J Neurosci Methods ; 174(2): 157-67, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18708093

RESUMO

High field magnetic resonance imaging (MRI) has been increasingly used to assess experimental spinal cord injury (SCI). In the present investigation, after partial spinal cord injury and excision of the whole spine, pathological changes of the spinal cord were studied in spinal cord-spine blocks, from the acute to the chronic state (24 h to 5 months). Using proton density (PD) weighted imaging parameters at a magnetic field strength of 9.4 tesla (T), acquisition times ranging from <1 to 10 h per specimen were used. High in-plane pixel resolution (68 and 38 microm, respectively) was obtained, as well as high signal-to-noise ratio (SNR), which is important for optimal contrast settings. The quality of the resulting MR images was demonstrated by comparison with histology. The cord and the lesion were shown in their anatomical surroundings, detecting cord swelling in the acute phase (24 h to 1 week) and cord atrophy at the chronic stage. Haemorrhage was detected as hypo-intense signal. Oedema, necrosis and scarring were hyper-intense but could not be distinguished. Histology confirmed that the anatomical delimitation of the lesion extent by MRI was precise, both with high and moderate resolution. The present investigation thus demonstrates the precision of spinal cord MRI at different survival delays after compressive partial SCI and establishes efficient imaging parameters for postmortem PD MRI.


Assuntos
Imageamento por Ressonância Magnética , Traumatismos da Medula Espinal/patologia , Animais , Feminino , Processamento de Imagem Assistida por Computador , Ratos , Ratos Wistar , Tempo
13.
FASEB J ; 20(8): 1239-41, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16636109

RESUMO

Macrophages (monocytes/microglia) could play a critical role in central nervous system repair. We have previously found a synchronism between the regression of spontaneous axonal regeneration and the deactivation of macrophages 3-4 wk after a compression-injury of rat spinal cord. To explore whether reactivation of endogenous macrophages might be beneficial for spinal cord repair, we have studied the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) in the same paraplegia model and in cell cultures. There was a significant, though transient, improvement of locomotor recovery after a single delayed intraperitoneal injection of 2 microg GM-CSF, which also increased significantly the expression of Cr3 and brain-derived neurotrophic factor (BDNF) by macrophages at the lesion site. At longer survival delays, axonal regeneration was significantly enhanced in GM-CSF-treated rats. In vitro, BV2 microglial cells expressed higher levels of BDNF in the presence of GM-CSF and neurons cocultured with microglial cells activated by GM-CSF generated more neurites, an effect blocked by a BDNF antibody. These experiments suggest that GM-CSF could be an interesting treatment option for spinal cord injury and that its beneficial effects might be mediated by BDNF.


Assuntos
Axônios/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Microglia/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Paraplegia/tratamento farmacológico , Animais , Axônios/fisiologia , Feminino , Cinética , Macrófagos/metabolismo , Atividade Motora/efeitos dos fármacos , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/patologia , Fibras Nervosas/fisiologia , Neuritos/efeitos dos fármacos , Paraplegia/metabolismo , Paraplegia/fisiopatologia , Ratos , Ratos Wistar
14.
Neurosci Lett ; 361(1-3): 76-8, 2004 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15135897

RESUMO

Any lesion in the nervous system, be it infectious, immunopathological, ischemic or traumatic, is followed by an inflammatory process that induces rapid activation of glial cells and additional recruitment of granulocytes, T-cells and monocytes/macrophages from the blood stream. Neuroinflammation is a double-sided sword. It can cause neuronal damage and participate in neuropathic pain, but it also has neuroprotective and neurotrophic effects at some stages. Cytokines are the main molecular actors of this 'network of inflammation'. Among them, granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pro-inflammatory hematopoietic cytokine widely used in haematological disorders to stimulate proliferation and differentiation of neutrophilic, eosinophilic and monocytic lineages. GM-CSF and its receptor are expressed in the brain and the cytokine can cross the blood-brain barrier. It is thus likely to affect various nervous system functions. This review will focus on the role of GM-CSF in nervous system disorders and their experimental models with particular emphasis on its possible beneficial effect on axonal regeneration after PNS and CNS injury.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Inflamação/imunologia , Doenças do Sistema Nervoso/imunologia , Traumatismos do Sistema Nervoso/imunologia , Animais , Quimiotaxia de Leucócito/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Cones de Crescimento/imunologia , Humanos , Inflamação/fisiopatologia , Neovascularização Patológica/imunologia , Regeneração Nervosa/imunologia , Doenças do Sistema Nervoso/fisiopatologia , Fagocitose/imunologia , Traumatismos do Sistema Nervoso/fisiopatologia
15.
J Neurosci Res ; 75(2): 253-261, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14705146

RESUMO

Electromagnetic fields are able to promote axonal regeneration in vitro and in vivo. Repetitive transcranial magnetic stimulation (rTMS) is used routinely in neuropsychiatric conditions and as an atraumatic method to activate descending motor pathways. After spinal cord injury, these pathways are disconnected from the spinal locomotor generator, resulting in most of the functional deficit. We have applied daily 10 Hz rTMS for 8 weeks immediately after an incomplete high (T4-5; n = 5) or low (T10-11; n = 6) thoracic closed spinal cord compression-injury in adult rats, using 6 high- and 6 low-lesioned non-stimulated animals as controls. Functional recovery of hindlimbs was assessed using the BBB locomotor rating scale. In the control group, the BBB score was significantly better from the 7th week post-injury in animals lesioned at T4-5 compared to those lesioned at T10-11. rTMS significantly improved locomotor recovery in T10-11-injured rats, but not in rats with a high thoracic injury. In rTMS-treated rats, there was significant positive correlation between final BBB score and grey matter density of serotonergic fibres in the spinal segment just caudal to the lesion. We propose that low thoracic lesions produce a greater functional deficit because they interfere with the locomotor centre and that rTMS is beneficial in such lesions because it activates this central pattern generator, presumably via descending serotonin pathways. The benefits of rTMS shown here suggest strongly that this non-invasive intervention strategy merits consideration for clinical trials in human paraplegics with low spinal cord lesions.


Assuntos
Campos Eletromagnéticos , Recuperação de Função Fisiológica/efeitos da radiação , Compressão da Medula Espinal/terapia , Medula Espinal/efeitos da radiação , Estimulação Magnética Transcraniana , Animais , Axônios/metabolismo , Axônios/efeitos da radiação , Axônios/ultraestrutura , Vias Eferentes/citologia , Vias Eferentes/metabolismo , Vias Eferentes/efeitos da radiação , Feminino , Imuno-Histoquímica , Atividade Motora/fisiologia , Atividade Motora/efeitos da radiação , Regeneração Nervosa/fisiologia , Regeneração Nervosa/efeitos da radiação , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Serotonina/metabolismo , Serotonina/efeitos da radiação , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Vértebras Torácicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA