Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137204

RESUMO

Given global coffee consumption, substantial quantities of spent coffee grounds (SCGs) are generated annually as a by-product of brewing coffee. SCG, although rich in bioactive compounds, is nowadays disposed of. The objective of this study is to compare, for the first time and from the same SCG, the efficiency of ethanol-water mixtures and acetone-water mixtures for the recovery of total polyphenols, chlorogenic acid, and caffeine. Acetone at 20% (m/m) was the most convenient solvent to extract all three bioactive compounds simultaneously, yielding 4.37 mg of GAE/g SCG for total polyphenols, chlorogenic acid (0.832 mg 5-CQA/g SCG), and caffeine (1.47 mg/g SCG). Additionally, this study aims to address some challenges associated with the industrial-scale utilization of SCG as a raw material, encompassing factors such as pre-treatment conditions (natural drying and oven drying), storage duration, and the kinetics of the extraction process. No significant difference was observed between the natural drying and oven drying of SCG. In terms of storage duration, it is advisable to process the SCG within less than 3-4 months of storage time. A significant decline of 82% and 70% in chlorogenic acid (5-CQA) and caffeine contents, respectively, was observed after eight months of storage. Furthermore, the kinetic study for the recovery of total polyphenols revealed that the optimal extraction times were 10 min for acetone at 20% and 40 min for water, with a yield increase of 28% and 34%, respectively. What is remarkable from the present study is the approach considered, using the simplest operating conditions (minimal time and solvent-to-solid ratio, and ambient temperature); hence, at an industrial scale, energy and resource consumption and equipment dimensions can be together reduced, leading to a more industrially sustainable extraction process.

2.
Foods ; 12(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36832852

RESUMO

This study aims to provide an overview of different extraction methods to obtain chlorogenic acid (CA) and caffeine (Caf) from spent coffee grounds (SCG). This overview shows that the quantity extracted is highly dependent on the type of SCG, so experiments using the same SCG are needed to compare different methods. Three easy and simple extraction methods will be tested at a laboratory scale and environmentally compared. All three experiments were of 1 min duration: first, using supramolecular solvent; second, with water and vortex; and third, with water assisted by ultrasound. Water extraction assisted by ultrasound at room temperature yielded the greatest quantity of chlorogenic acid and caffeine, with 1.15 mg CA/g and 0.972 mg Caf/g, respectively. Extraction using supra-solvent leads to a lower content of CA in the supra-phase since it has more affinity for the water-based inferior phase. An environmental assessment using life cycle assessment has been carried out to compare water and supra extraction methods for the manufacture of two different commercial products: a face cream and an eye contour serum. Results show that the type of solvent and the amount of active substance extracted have a great influence on the environmental results. The results presented here are important for companies willing to obtain these active substances at an industrial scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA